forked from mindspore-Ecosystem/mindspore
!3284 eager mode enable sparse
Merge pull request !3284 from riemann_penn/eager_mode_enable_sparse
This commit is contained in:
commit
ce6cc4a04e
|
@ -150,7 +150,8 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() {
|
|||
using mindspore::parse::PyObjectWrapper;
|
||||
|
||||
EvalResultPtr StandardPrimEvaluator::EvalPrim(const AnalysisEnginePtr &engine, const AbstractBasePtrList &args) {
|
||||
if (prim_ != prim::kPrimMakeTuple && prim_ != prim::kPrimSwitch) {
|
||||
if (prim_ != prim::kPrimMakeTuple && prim_ != prim::kPrimSwitch && prim_ != prim::kPrimEnvSetItem &&
|
||||
prim_ != prim::kPrimEnvGetItem) {
|
||||
auto ret_abstract = AbstractEval(args);
|
||||
if (ret_abstract != nullptr) {
|
||||
MS_LOG(DEBUG) << "StandardPrimEvaluator eval Undetermined";
|
||||
|
|
|
@ -217,17 +217,20 @@ class IndexedSlices:
|
|||
A sparse representation of a set of tensor slices at given indices.
|
||||
|
||||
An IndexedSlices is typically used to represent a subset of a larger
|
||||
tensor dense of shape [LARGE0, D1, .. , DN] where LARGE0 >> D0.
|
||||
tensor dense of shape [L0, D1, .. , DN] where L0 >> D0.
|
||||
|
||||
The values in indices are the indices in the first dimension of the slices
|
||||
that have been extracted from the larger tensor.
|
||||
that have been extracted from the larger tensor.
|
||||
|
||||
The dense tensor dense represented by an IndexedSlices slices has
|
||||
`dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]`.
|
||||
`dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]`.
|
||||
|
||||
IndexedSlices can only be used in `Cell`'s contruct method.
|
||||
|
||||
Args:
|
||||
indices (Tensor): A 1-D integer Tensor of shape [D0].
|
||||
values (Tensor): A Tensor of any dtype of shape [D0, D1, ..., Dn].
|
||||
dense_shape: (tuple): A integer tuple containing the shape
|
||||
dense_shape (tuple): A integer tuple containing the shape
|
||||
of the corresponding dense tensor.
|
||||
|
||||
Returns:
|
||||
|
@ -254,8 +257,9 @@ class SparseTensor:
|
|||
A sparse representation of a set of nonzero elememts from a tensor at given indices.
|
||||
|
||||
SparseTensor can only be used in `Cell`'s contruct method.
|
||||
|
||||
For a tensor dense, its SparseTensor(indices, values, dense_shape) has
|
||||
`dense[indices[i]] = values[i]`.
|
||||
`dense[indices[i]] = values[i]`.
|
||||
|
||||
Args:
|
||||
indices (Tensor): A 2-D integer Tensor of shape `[N, ndims]`,
|
||||
|
@ -263,7 +267,7 @@ class SparseTensor:
|
|||
the SparseTensor, respectively.
|
||||
values (Tensor): A 1-D tensor of any type and shape `[N]`, which
|
||||
supplies the values for each element in indices.
|
||||
dense_shape: (tuple): A integer tuple of size `ndims`,
|
||||
dense_shape (tuple): A integer tuple of size `ndims`,
|
||||
which specifies the dense_shape of the sparse tensor.
|
||||
|
||||
Returns:
|
||||
|
|
Loading…
Reference in New Issue