!5251 Combine sparse embedding gradient

Merge pull request !5251 from chengang/combine_grad_r0.7
This commit is contained in:
mindspore-ci-bot 2020-08-26 19:29:10 +08:00 committed by Gitee
commit c904bc2f00
12 changed files with 1178 additions and 50 deletions

735
' Normal file
View File

@ -0,0 +1,735 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_PS_WORKER_PROXY_H_
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_PS_WORKER_PROXY_H_
#include <unordered_map>
#include <algorithm>
#include <utility>
#include <memory>
#include <vector>
#include <unordered_set>
#include "ps/ps.h"
#include "frontend/parallel/ps/util.h"
#include "backend/kernel_compiler/common_utils.h"
namespace mindspore {
namespace parallel {
namespace ps {
template <typename T>
class WorkerProxy : public ::ps::KVWorker<T> {
public:
using Worker = ::ps::KVWorker<T>;
using Callback = std::function<void()>;
using SlicedKVs = std::vector<std::pair<bool, ::ps::KVPairs<T>>>;
using Slicer = std::function<void(int ts, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &ranges,
SlicedKVs *sliced, std::map<int, int> &attrs)>;
using ::ps::SimpleApp::obj_;
explicit WorkerProxy(int app_id, int customer_id, int lookup_customer_id, int general_customer_id)
: Worker(app_id, customer_id) {
server_num_ = ::ps::NumServers();
Util::SetRankId(::ps::MyRank());
using std::placeholders::_1;
using std::placeholders::_2;
using std::placeholders::_3;
using std::placeholders::_4;
using std::placeholders::_5;
lookup_customer_ = std::unique_ptr<::ps::Customer>(
new ::ps::Customer(app_id, lookup_customer_id, std::bind(&WorkerProxy<T>::ProcessLookupResult, this, _1)));
general_customer_ = std::unique_ptr<::ps::Customer>(
new ::ps::Customer(app_id, general_customer_id, std::bind(&WorkerProxy<T>::ProcessResponse, this, _1)));
lookup_slicer_ = std::bind(&WorkerProxy<T>::LookupIdSlicer, this, _1, _2, _3, _4, _5);
sparse_slicer_ = std::bind(&WorkerProxy<T>::SparseSlicer, this, _1, _2, _3, _4, _5);
broadcast_slicer_ = std::bind(&WorkerProxy<T>::BroadcastSlicer, this, _1, _2, _3, _4, _5);
round_robin_slicer_ = std::bind(&WorkerProxy<T>::RoundRobinSlicer, this, _1, _2, _3, _4, _5);
worker_init_embedding_slicer_ = std::bind(&WorkerProxy<T>::WorkerInitEmbeddingSlicer, this, _1, _2, _3, _4, _5);
}
~WorkerProxy() override = default;
void AddEmbeddingTable(const ::ps::Key &key, const size_t &row_count);
void AddKeyToServerId(const ::ps::Key &key);
void EmbeddingLookup(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<int> &lookup_ids,
const ::ps::SArray<int> &lens, ::ps::SArray<T> *outs, int cmd = 0, const Callback &cb = nullptr,
int priority = 0);
int InitEmbeddingTable(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<T> &vals,
const ::ps::SArray<int> &lens = {}, const Callback &cb = nullptr, int priority = 0);
bool IsReadyForPush(const Key &key);
bool IsReadyForPull(const Key &key);
void PushData(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<T> &vals, const ::ps::SArray<int> &lens = {},
int cmd = 0, int priority = 0);
void PushSparseData(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<T> &vals, const ::ps::SArray<int> &lens,
size_t grad_index, size_t indice_index, size_t first_dim_size, size_t outer_dim_size);
void PullData(const ::ps::SArray<::ps::Key> &keys, ::ps::SArray<T> *vals, ::ps::SArray<int> *lens = nullptr,
int cmd = 0, int priority = 0);
void Finalize();
private:
template <typename C>
int AddLookupCB(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<int> &lookup_ids, C *vals, int cmd,
const Callback &cb);
int AddGeneralRspCB(const ::ps::SArray<::ps::Key> &keys, ::ps::SArray<T> *vals, ::ps::SArray<int> *lens, int cmd,
const Callback &cb);
void LookupIdSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced, std::map<int, int> &attrs);
void SparseSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced, std::map<int, int> &attrs);
void BroadcastSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced, std::map<int, int> &attrs);
void RoundRobinSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced, std::map<int, int> &attrs);
void WorkerInitEmbeddingSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced, std::map<int, int> &attrs);
void ProcessLookupResult(const ::ps::Message &msg);
void ProcessResponse(const ::ps::Message &msg);
void Send(::ps::Customer *customer, int timestamp, bool push, bool pull, int cmd, const ::ps::KVPairs<T> &kvs,
const Slicer &slicer, std::map<int, int> attrs = {});
void AddKeyByHashMod(const ::ps::Key &key);
void PrepareSparseGradient(const size_t begin, const size_t end, const std::vector<int> &indice_ids,
const std::vector<std::pair<int, T *>> &indice_to_grad, const int *all_indice,
const size_t segment_size, T *gradient, int *indice);
void ReduceSparseGradient(T *gradients, int *indices, const size_t indices_size, size_t segment_size,
const size_t first_dim_size, const size_t outer_dim_size,
mindspore::kernel::SparseGradient &unique_sparse_grad);
void BuildSparseValue(const ::ps::SArray<int> &lengths, const size_t grad_index, const size_t indice_index,
const T *original_data, const T *grads, int *indices, ::ps::SArray<T> &reduced_data);
int server_num_;
std::unique_ptr<::ps::Customer> lookup_customer_;
std::unique_ptr<::ps::Customer> general_customer_;
std::unordered_map<::ps::Key, std::shared_ptr<std::vector<::ps::Range>>> embedding_table_ranges_;
std::unordered_map<int, std::vector<::ps::KVPairs<T>>> lookup_results_;
std::unordered_map<int, ::ps::KVPairs<T>> gathered_response_;
std::mutex mutex_;
Slicer lookup_slicer_;
Slicer sparse_slicer_;
Slicer broadcast_slicer_;
Slicer round_robin_slicer_;
Slicer worker_init_embedding_slicer_;
std::unordered_map<int, Callback> lookup_callbacks_;
std::unordered_map<int, Callback> general_callbacks_;
std::unordered_map<int, int> expected_result_count_;
std::unordered_map<::ps::Key, int> key_to_server_id_;
std::unordered_map<::ps::Key, size_t> embedding_row_cnt_;
};
template <typename T>
void WorkerProxy<T>::AddEmbeddingTable(const ::ps::Key &key, const size_t &row_count) {
uint64_t begin = 0;
uint64_t end = 0;
for (int i = 0; i < server_num_; i++) {
int local_row_cnt = Util::LocalShard(row_count, i, server_num_);
if (i == 0) {
end = local_row_cnt - 1;
} else {
begin = end + 1;
end += local_row_cnt;
}
::ps::Range range(begin, end);
if (embedding_table_ranges_.count(key) == 0) {
embedding_table_ranges_[key] = std::make_shared<std::vector<::ps::Range>>();
}
embedding_table_ranges_[key]->push_back(range);
}
embedding_row_cnt_[key] = row_count;
}
template <typename T>
void WorkerProxy<T>::AddKeyByHashMod(const ::ps::Key &key) {
if (server_num_ == 0) {
MS_LOG(EXCEPTION) << "Server number is invalid:0";
}
key_to_server_id_[key] = static_cast<int>(key % server_num_);
MS_LOG(INFO) << "The server id of key " << key << " is " << key_to_server_id_[key];
}
template <typename T>
void WorkerProxy<T>::AddKeyToServerId(const ::ps::Key &key) {
AddKeyByHashMod(key);
}
template <typename T>
void WorkerProxy<T>::EmbeddingLookup(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<int> &lookup_ids,
const ::ps::SArray<int> &lens, ::ps::SArray<T> *outs, int cmd, const Callback &cb,
int priority) {
int ts = AddLookupCB(keys, lookup_ids, outs, cmd, cb);
::ps::KVPairs<T> kvs;
kvs.keys = keys;
kvs.lens = lookup_ids;
kvs.priority = priority;
expected_result_count_[ts] = 0;
Send(lookup_customer_.get(), ts, true, true, cmd, kvs, lookup_slicer_);
int expect_rt_count = expected_result_count_[ts];
lookup_customer_->AddResponse(ts, server_num_ - expect_rt_count);
lookup_customer_->WaitRequest(ts);
expected_result_count_.erase(ts);
}
template <typename T>
int WorkerProxy<T>::InitEmbeddingTable(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<T> &vals,
const ::ps::SArray<int> &lens, const Callback &cb, int priority) {
int ts = obj_->NewRequest(::ps::kServerGroup);
::ps::KVPairs<T> kvs;
kvs.keys = keys;
kvs.vals = vals;
kvs.lens = lens;
kvs.priority = priority;
Send(obj_, ts, true, false, kInitEmbeddingsCmd, kvs, broadcast_slicer_);
return ts;
}
template <typename T>
bool WorkerProxy<T>::IsReadyForPush(const Key &key) {
::ps::SArray<T> result(1, 0);
PullData({key}, &result, nullptr, kCheckReadyForPushCmd);
if (result[0] > 0) {
return true;
} else {
return false;
}
}
template <typename T>
bool WorkerProxy<T>::IsReadyForPull(const Key &key) {
::ps::SArray<T> result(1, 0);
PullData({key}, &result, nullptr, kCheckReadyForPullCmd);
if (result[0] > 0) {
return true;
} else {
return false;
}
}
template <typename T>
void WorkerProxy<T>::PushData(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<T> &vals,
const ::ps::SArray<int> &lens, int cmd, int priority) {
int ts = AddGeneralRspCB(keys, nullptr, nullptr, cmd, nullptr);
::ps::KVPairs<T> kvs;
kvs.keys = keys;
kvs.vals = vals;
kvs.lens = lens;
kvs.priority = priority;
if (embedding_table_ranges_.count(keys[0])) {
if (cmd == kInitWeightsCmd) {
Send(general_customer_.get(), ts, true, false, cmd, kvs, worker_init_embedding_slicer_);
} else {
Send(general_customer_.get(), ts, true, false, cmd, kvs, broadcast_slicer_);
}
} else {
Send(general_customer_.get(), ts, true, false, cmd, kvs, round_robin_slicer_);
}
if (expected_result_count_[ts] < server_num_) {
general_customer_->AddResponse(ts, server_num_ - expected_result_count_[ts]);
}
general_customer_->WaitRequest(ts);
}
template <typename T>
void WorkerProxy<T>::PushSparseData(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<T> &vals,
const ::ps::SArray<int> &lens, size_t grad_index, size_t indice_index,
size_t first_dim_size, size_t outer_dim_size) {
int ts = AddGeneralRspCB(keys, nullptr, nullptr, 0, nullptr);
::ps::KVPairs<T> kvs;
kvs.keys = keys;
kvs.vals = vals;
kvs.lens = lens;
int cmd = 0;
if (embedding_table_ranges_.count(keys[0])) {
std::map<int, int> attrs{{0, grad_index}, {1, indice_index}, {2, first_dim_size}, {3, outer_dim_size}};
Send(general_customer_.get(), ts, true, false, cmd, kvs, sparse_slicer_, attrs);
} else {
Send(general_customer_.get(), ts, true, false, cmd, kvs, round_robin_slicer_);
}
if (expected_result_count_[ts] < server_num_) {
general_customer_->AddResponse(ts, server_num_ - expected_result_count_[ts]);
}
general_customer_->WaitRequest(ts);
}
template <typename T>
void WorkerProxy<T>::PullData(const ::ps::SArray<::ps::Key> &keys, ::ps::SArray<T> *vals, ::ps::SArray<int> *lens,
int cmd, int priority) {
int ts = AddGeneralRspCB(keys, vals, lens, cmd, nullptr);
::ps::KVPairs<T> kvs;
kvs.keys = keys;
kvs.priority = priority;
if (embedding_table_ranges_.count(keys[0])) {
Send(general_customer_.get(), ts, false, true, cmd, kvs, broadcast_slicer_);
} else {
Send(general_customer_.get(), ts, false, true, cmd, kvs, round_robin_slicer_);
}
if (expected_result_count_[ts] < server_num_) {
general_customer_->AddResponse(ts, server_num_ - expected_result_count_[ts]);
}
general_customer_->WaitRequest(ts);
}
template <typename T>
void WorkerProxy<T>::Finalize() {
int ts = obj_->NewRequest(::ps::kServerGroup);
::ps::KVPairs<T> kvs;
kvs.keys.push_back(0);
kvs.vals.push_back(0.0f);
Send(obj_, ts, true, false, kFinalizeCmd, kvs, broadcast_slicer_);
obj_->WaitRequest(ts);
::ps::Finalize(0, true);
}
template <typename T>
template <typename C>
int WorkerProxy<T>::AddLookupCB(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<int> &lookup_ids,
C *lookup_result, int cmd, const Callback &cb) {
int ts = lookup_customer_->NewRequest(::ps::kServerGroup);
const auto &callback = [this, ts, keys, lookup_ids, lookup_result, cb]() mutable {
mutex_.lock();
auto &kvs = lookup_results_[ts];
mutex_.unlock();
std::unordered_map<Key, std::shared_ptr<std::pair<T *, int>>> id_addr_map;
for (const auto &s : kvs) {
int offset = 0;
int len = s.vals.size() / s.keys.size();
for (size_t i = 0; i < s.keys.size(); i++) {
const Key &key = s.keys[i];
T *addr = s.vals.data() + offset;
offset += len;
id_addr_map[key] = std::make_shared<std::pair<T *, int>>(std::make_pair(addr, len));
}
}
T *result_addr = lookup_result->data();
int offset = 0;
for (size_t i = 0; i < lookup_ids.size(); i++) {
auto &pair = id_addr_map[static_cast<Key>(lookup_ids[i])];
int size = pair->second * sizeof(T);
auto ret = memcpy_s(result_addr + offset, size, pair->first, size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
offset += pair->second;
}
mutex_.lock();
lookup_results_.erase(ts);
mutex_.unlock();
if (cb) cb();
};
lookup_callbacks_[ts] = callback;
return ts;
}
template <typename T>
int WorkerProxy<T>::AddGeneralRspCB(const ::ps::SArray<::ps::Key> &keys, ::ps::SArray<T> *vals, ::ps::SArray<int> *lens,
int cmd, const Callback &cb) {
int ts = general_customer_->NewRequest(::ps::kServerGroup);
const auto &callback = [this, ts, keys, vals, lens, cb]() mutable {
mutex_.lock();
auto &kvs = gathered_response_[ts];
mutex_.unlock();
*vals = kvs.vals;
if (lens) {
*lens = kvs.lens;
}
mutex_.lock();
gathered_response_.erase(ts);
mutex_.unlock();
if (cb) {
cb();
}
};
general_callbacks_[ts] = callback;
return ts;
}
template <typename T>
void WorkerProxy<T>::LookupIdSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced, std::map<int, int> &attrs) {
int *lookup_ids = send.lens.data();
size_t id_size = send.lens.size();
const Key &key = send.keys[0];
const std::vector<::ps::Range> &ranges = *(embedding_table_ranges_[key]);
sliced->resize(ranges.size());
for (size_t i = 0; i < ranges.size(); i++) {
const ::ps::Range &range = ranges[i];
const auto &begin = range.begin();
const auto &end = range.end();
std::unordered_set<int> unique_ids;
auto &kvs = sliced->at(i).second;
kvs.keys.push_back(key);
kvs.vals.push_back(0.0f);
for (size_t j = 0; j < id_size; j++) {
auto lookup_id = static_cast<uint64_t>(lookup_ids[j]);
if (lookup_id >= begin && lookup_id <= end) {
unique_ids.insert(lookup_id);
}
}
for (const auto &lookup_id : unique_ids) {
kvs.keys.push_back(lookup_id);
kvs.vals.push_back(0.0f);
}
if (kvs.keys.size() <= 1) {
sliced->at(i).first = false;
} else {
sliced->at(i).first = true;
expected_result_count_[timestamp] += 1;
}
}
}
template <typename T>
void WorkerProxy<T>::SparseSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced, std::map<int, int> &attrs) {
// Init variables
T *data = send.vals.data();
size_t grad_index = static_cast<size_t>(attrs[0]);
size_t indice_index = static_cast<size_t>(attrs[1]);
size_t first_dim_size = static_cast<size_t>(attrs[2]);
size_t outer_dim_size = static_cast<size_t>(attrs[3]);
int grad_size = send.lens[grad_index];
int indice_size = send.lens[indice_index];
int segment_size = grad_size / indice_size;
int grad_offset = 0;
int indice_offset = 0;
for (size_t i = 0; i < grad_index; i++) {
grad_offset += send.lens[i];
}
for (size_t j = 0; j < indice_index; j++) {
indice_offset += send.lens[j];
}
T *grad_data = data + grad_offset;
int *indice_data = reinterpret_cast<int *>(data) + indice_offset;
// Build the mappings of indice to gradient
std::vector<std::pair<int, T *>> indice_to_grads;
for (int i = 0; i < indice_size; i++) {
int indice = indice_data[i];
T *grad = grad_data + i * segment_size;
indice_to_grads.push_back(std::make_pair(indice, grad));
}
const Key &key = send.keys[0];
const std::vector<::ps::Range> &ranges = *(embedding_table_ranges_[key]);
sliced->resize(ranges.size());
// Construct reduced sparse data for each server
for (size_t i = 0; i < ranges.size(); i++) {
const ::ps::Range &range = ranges[i];
const auto &begin = range.begin();
const auto &end = range.end();
auto &kvs = sliced->at(i).second;
kvs.keys = send.keys;
kvs.lens = send.lens;
// Prepare the sparse gradient and indice
std::vector<int> indice_ids;
for (int j = 0; j < indice_size; j++) {
size_t indice = static_cast<size_t>(indice_data[j]);
if (indice >= begin && indice <= end) {
indice_ids.push_back(indice);
}
}
size_t indices_size = indice_ids.size();
int slice_segment_size = indices_size * segment_size;
T *src_grad_data = new T[slice_segment_size];
int *src_indice_data = new int[indices_size];
PrepareSparseGradient(begin, end, indice_ids, indice_to_grads, indice_data, segment_size, src_grad_data,
src_indice_data);
// Reduce the sparse gradient and indice
T *new_grad = new T[slice_segment_size];
int *new_indices = new int[indices_size];
mindspore::kernel::SparseGradient unique_sparse_grad({new_grad, new_indices, indices_size});
ReduceSparseGradient(src_grad_data, src_indice_data, indices_size, segment_size, first_dim_size, outer_dim_size,
unique_sparse_grad);
// Update the length of reduce sparse gradient and indice
kvs.lens[grad_index] = unique_sparse_grad.indices_size_ * segment_size;
kvs.lens[indice_index] = unique_sparse_grad.indices_size_;
// Build the sparse value to be sent
size_t total_size = 0;
for (auto size : kvs.lens) {
total_size += size;
}
::ps::SArray<T> reduced_data(total_size, 0);
BuildSparseValue(kvs.lens, grad_index, indice_index, data, unique_sparse_grad.value_, unique_sparse_grad.indices_,
reduced_data);
kvs.vals = reduced_data;
if (indices_size <= 0) {
sliced->at(i).first = false;
} else {
sliced->at(i).first = true;
expected_result_count_[timestamp] += 1;
}
}
}
template <typename T>
void WorkerProxy<T>::PrepareSparseGradient(const size_t begin, const size_t end, const std::vector<int> &indice_ids,
const std::vector<std::pair<int, T *>> &indice_to_grads,
const int *all_indice, const size_t segment_size, T *gradient,
int *indices) {
int offset = 0;
int index = 0;
size_t segment_data_size = segment_size * sizeof(T);
for (auto &pair : indice_to_grads) {
indices[index++] = pair.first;
auto ret = memcpy_s(gradient + offset, segment_data_size, pair.second, segment_data_size);
if (ret != 0) {
MS_LOG(ERROR) << "memcpy_s error, errorno(" << ret << ")";
}
offset += segment_size;
}
}
template <typename T>
void WorkerProxy<T>::ReduceSparseGradient(T *gradients, int *indices, const size_t indices_size, size_t segment_size,
const size_t first_dim_size, const size_t outer_dim_size,
mindspore::kernel::SparseGradient &unique_sparse_grad) {
size_t slice_segment_size = indices_size * segment_size;
auto workspace_grad = new T[slice_segment_size];
auto workspace_indices = new int[indices_size];
MS_EXCEPTION_IF_NULL(gradients);
MS_EXCEPTION_IF_NULL(indices);
MS_EXCEPTION_IF_NULL(workspace_grad);
MS_EXCEPTION_IF_NULL(workspace_indices);
mindspore::kernel::SparseGradient workspace_sparse_grad({workspace_grad, workspace_indices, indices_size});
mindspore::kernel::SparseGradient input_sparse_grad({gradients, indices, indices_size});
ReduceSparseGradientParam param;
param.input_grad_ = &input_sparse_grad;
param.workspace_grad_ = &workspace_sparse_grad;
param.output_grad_ = &unique_sparse_grad;
param.max_index_ = first_dim_size;
param.value_stride_ = outer_dim_size;
BucketReduceSparseGradient(param);
}
template <typename T>
void WorkerProxy<T>::BuildSparseValue(const ::ps::SArray<int> &lengths, const size_t grad_index,
const size_t indice_index, const T *original_data, const T *grads, int *indices,
::ps::SArray<T> &reduced_data) {
int offset = 0;
for (size_t i = 0; i < lengths.size(); i++) {
if (i != grad_index && i != indice_index) {
int data_size = lengths[i] * sizeof(T);
auto ret = memcpy_s(reduced_data.data() + offset, data_size, original_data + offset, data_size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
}
offset += lengths[i];
}
// Fill the reduced gradient
int grad_offset = 0;
for (size_t i = 0; i < grad_index; i++) {
grad_offset += lengths[i];
}
int data_size = lengths[grad_index] * sizeof(T);
auto ret = memcpy_s(reduced_data.data() + grad_offset, data_size, grads, data_size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
// Fill the reduced indice
data_size = lengths[indice_index] * sizeof(T);
int indice_offset = grad_offset + data_size;
T *indice_data = reduced_data.data() + indice_offset;
T *convert = new T[lengths[indice_index]];
for (int i = 0; i < lengths[indice_index]; i++) {
convert[i] = static_cast<T>(indices[i]);
}
ret = memcpy_s(indice_data, data_size, convert, data_size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
delete[] convert;
}
template <typename T>
void WorkerProxy<T>::BroadcastSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced, std::map<int, int> &attr) {
sliced->resize(server_num_);
for (int i = 0; i < server_num_; i++) {
sliced->at(i).first = true;
sliced->at(i).second = send;
expected_result_count_[timestamp] += 1;
}
}
template <typename T>
void WorkerProxy<T>::RoundRobinSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced,
std::map<int, int> &attr) {
sliced->resize(server_num_);
auto keys = send.keys;
auto vals = send.vals;
auto lens = send.lens;
int server_id, len;
::ps::Key param_key;
for (size_t i = 0; i < keys.size(); i++) {
param_key = keys[i];
server_id = key_to_server_id_[param_key];
if (!sliced->at(server_id).first) {
sliced->at(server_id).first = true;
expected_result_count_[timestamp] += 1;
}
::ps::KVPairs<T> &server_kv_pairs = sliced->at(server_id).second;
server_kv_pairs.keys.push_back(param_key);
if (vals.empty()) {
continue;
}
len = lens[i];
int offset = std::accumulate(lens.begin(), lens.begin() + i, 0);
auto val_begin = vals.begin() + offset;
auto val_end = val_begin + len;
for (auto iter = val_begin; iter != val_end; iter++) {
server_kv_pairs.vals.push_back(*iter);
}
server_kv_pairs.lens.push_back(len);
}
}
template <typename T>
void WorkerProxy<T>::WorkerInitEmbeddingSlicer(int timestamp, const ::ps::KVPairs<T> &send,
const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced,
std::map<int, int> &attrs) {
sliced->resize(server_num_);
auto keys = send.keys;
auto vals = send.vals;
auto lens = send.lens;
size_t col_cnt = lens[0] / embedding_row_cnt_[keys[0]];
const std::vector<::ps::Range> &ranges = *(embedding_table_ranges_[keys[0]]);
for (size_t i = 0; i < ranges.size(); i++) {
size_t offset_begin = ranges[i].begin() * col_cnt;
size_t offset_end = (ranges[i].end() + 1) * col_cnt;
::ps::KVPairs<T> kvs;
kvs.keys = keys;
kvs.vals = vals.segment(offset_begin, offset_end);
kvs.lens.push_back(offset_end - offset_begin);
sliced->at(i).first = true;
sliced->at(i).second = kvs;
}
}
template <typename T>
void WorkerProxy<T>::ProcessLookupResult(const ::ps::Message &msg) {
int ts = msg.meta.timestamp;
if (msg.meta.pull) {
CHECK_GE(msg.data.size(), (size_t)2);
::ps::KVPairs<T> kvs;
kvs.keys = msg.data[0];
kvs.vals = msg.data[1];
if (msg.data.size() > (size_t)2) {
kvs.lens = msg.data[2];
}
mutex_.lock();
lookup_results_[ts].push_back(kvs);
mutex_.unlock();
}
if (lookup_customer_->NumResponse(ts) == expected_result_count_[ts] - 1) {
const auto &cb = lookup_callbacks_[ts];
cb();
lookup_callbacks_.erase(ts);
}
}
template <typename T>
void WorkerProxy<T>::ProcessResponse(const ::ps::Message &msg) {
int ts = msg.meta.timestamp;
if (msg.meta.pull) {
CHECK_GE(msg.data.size(), (size_t)2);
::ps::KVPairs<T> kvs;
kvs.keys = msg.data[0];
kvs.vals = msg.data[1];
if (msg.data.size() > (size_t)2) {
kvs.lens = msg.data[2];
}
mutex_.lock();
for (auto key : kvs.keys) {
gathered_response_[ts].keys.push_back(key);
}
for (auto val : kvs.vals) {
gathered_response_[ts].vals.push_back(val);
}
for (auto len : kvs.lens) {
gathered_response_[ts].lens.push_back(len);
}
mutex_.unlock();
if (general_customer_->NumResponse(ts) + 1 == server_num_) {
const auto &cb = general_callbacks_[ts];
cb();
general_callbacks_.erase(ts);
}
}
}
template <typename T>
void WorkerProxy<T>::Send(::ps::Customer *customer, int timestamp, bool push, bool pull, int cmd,
const ::ps::KVPairs<T> &kvs, const Slicer &slicer, std::map<int, int> attrs) {
SlicedKVs sliced;
slicer(timestamp, kvs, ::ps::Postoffice::Get()->GetServerKeyRanges(), &sliced, attrs);
for (size_t i = 0; i < sliced.size(); i++) {
const auto &s = sliced[i];
if (!s.first) continue;
::ps::Message msg;
msg.meta.app_id = customer->app_id();
msg.meta.customer_id = customer->customer_id();
msg.meta.request = true;
msg.meta.push = push;
msg.meta.pull = pull;
msg.meta.head = cmd;
msg.meta.timestamp = timestamp;
msg.meta.recver = ::ps::Postoffice::Get()->ServerRankToID(i);
msg.meta.priority = kvs.priority;
const auto &kvs = s.second;
if (kvs.keys.size()) {
msg.AddData(kvs.keys);
msg.AddData(kvs.vals);
if (kvs.lens.size()) {
msg.AddData(kvs.lens);
}
}
::ps::Postoffice::Get()->van()->Send(msg);
}
}
} // namespace ps
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_PS_WORKER_PROXY_H_

View File

@ -71,8 +71,8 @@ void SparseApplyAdamPSKernel::ReInit(const std::shared_ptr<std::vector<std::shar
const std::vector<std::shared_ptr<std::vector<size_t>>> &shape_vec = *shapes;
const std::vector<size_t> &indices_shape = *(shape_vec[0]);
indices_size_ = indices_shape[0];
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float);
workspace_size_list_[1] = indices_size_ * sizeof(int);
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float) * worker_num_;
workspace_size_list_[1] = indices_size_ * sizeof(int) * worker_num_;
}
void SparseApplyAdamPSKernel::ReInit(const std::vector<AddressPtr> &inputs) {
@ -85,10 +85,6 @@ void SparseApplyAdamPSKernel::ReInit(const std::vector<AddressPtr> &inputs) {
bool SparseApplyAdamPSKernel::Execute(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) {
ReInit(inputs);
int *indices = reinterpret_cast<int *>(inputs[10]->addr);
for (size_t i = 0; i < inputs[10]->size / sizeof(int); i++) {
indices[i] -= row_offset_;
}
return Launch(inputs, workspace, outputs);
}

View File

@ -74,15 +74,15 @@ void SparseApplyFtrlPSKernel::ReInit(const std::shared_ptr<std::vector<std::shar
const std::vector<std::shared_ptr<std::vector<size_t>>> &shape_vec = *shapes;
std::vector<size_t> indices_shape = *(shape_vec[0]);
indices_size_ = indices_shape[0];
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float);
workspace_size_list_[1] = indices_size_ * sizeof(int);
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float) * worker_num_;
workspace_size_list_[1] = indices_size_ * sizeof(int) * worker_num_;
}
void SparseApplyFtrlPSKernel::ReInit(const std::vector<AddressPtr> &inputs) {
const auto &indices_addr = inputs[4];
indices_size_ = indices_addr->size / sizeof(int);
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float);
workspace_size_list_[1] = indices_size_ * sizeof(int);
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float) * worker_num_;
workspace_size_list_[1] = indices_size_ * sizeof(int) * worker_num_;
}
bool SparseApplyFtrlPSKernel::Execute(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,

View File

@ -71,15 +71,15 @@ void SparseApplyLazyAdamPSKernel::ReInit(
const std::vector<std::shared_ptr<std::vector<size_t>>> &shape_vec = *shapes;
const std::vector<size_t> &indices_shape = *(shape_vec[0]);
indices_size_ = indices_shape[0];
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float);
workspace_size_list_[1] = indices_size_ * sizeof(int);
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float) * worker_num_;
workspace_size_list_[1] = indices_size_ * sizeof(int) * worker_num_;
}
void SparseApplyLazyAdamPSKernel::ReInit(const std::vector<AddressPtr> &inputs) {
const auto &indices_addr = inputs[10];
indices_size_ = indices_addr->size / sizeof(int);
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float);
workspace_size_list_[1] = indices_size_ * sizeof(int);
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float) * worker_num_;
workspace_size_list_[1] = indices_size_ * sizeof(int) * worker_num_;
}
bool SparseApplyLazyAdamPSKernel::Execute(const std::vector<AddressPtr> &inputs,

View File

@ -16,6 +16,7 @@
#include "frontend/parallel/ps/optimizer_info.h"
#include <memory>
#include "frontend/parallel/ps/util.h"
namespace mindspore {
namespace parallel {
@ -30,6 +31,8 @@ const std::vector<AddressPtr> &OptimizerInfo::outputs() { return outputs_; }
bool OptimizerInfo::IsSparse() const { return false; }
const size_t OptimizerInfo::indice_size() const { return 0; }
size_t OptimizerInfo::grad_index() { return 0; }
size_t OptimizerInfo::indices_index() { return 0; }
@ -57,7 +60,8 @@ void DenseOptimInfo::Accumulate(const Values &values, const Lengths &lengths) {
}
}
void DenseOptimInfo::ComputeMean(size_t n) {
void DenseOptimInfo::ComputeMean(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &, size_t n,
size_t server_num, size_t rank_id) {
if (n > 1) {
float *accum_grad_data = reinterpret_cast<float *>(gradient()->addr);
size_t size = gradient()->size / sizeof(float);
@ -96,15 +100,88 @@ void SparseOptimInfo::Accumulate(const Values &values, const Lengths &lengths) {
for (size_t i = 0; i < indices_index; i++) {
indice_offset += lengths[i];
}
int *incr_indice_data = reinterpret_cast<int *>(values.data() + indice_offset);
size_t incr_indice_size = lengths[indices_index] * sizeof(float);
float *incr_indice_data = values.data() + indice_offset;
size_t incr_indice_size = lengths[indices_index];
size_t incr_indice_data_size = incr_indice_size * sizeof(int);
int *converted_indices = new int[incr_indice_size];
for (size_t i = 0; i < incr_indice_size; i++) {
converted_indices[i] = static_cast<int>(incr_indice_data[i]);
}
auto ret2 = memcpy_s(accum_indices_data + indices_offset_, incr_indice_size, incr_indice_data, incr_indice_size);
auto ret2 =
memcpy_s(accum_indices_data + indices_offset_, incr_indice_data_size, converted_indices, incr_indice_data_size);
if (ret2 != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret2 << ")";
}
delete[] converted_indices;
indices_offset_ += lengths[indices_index];
indices()->size += incr_indice_size;
indices()->size += incr_indice_data_size;
}
void SparseOptimInfo::ComputeMean(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &shapes,
size_t n, size_t server_num, size_t rank_id) {
size_t indices_size = static_cast<size_t>(indices()->size / sizeof(int));
int segment_size = gradient()->size / indices()->size;
float *new_grad = new float[indices_size * segment_size];
int *new_indices = new int[indices_size];
mindspore::kernel::SparseGradient unique_sparse_grad({new_grad, new_indices, indices_size});
const std::vector<std::shared_ptr<std::vector<size_t>>> &shape_vec = *shapes;
if (shape_vec.size() < 2 || shape_vec[1] == nullptr) {
MS_LOG(EXCEPTION) << "No input shape found";
}
auto input_shapes = shape_vec.size() > 0 ? shape_vec[1] : nullptr;
MS_EXCEPTION_IF_NULL(input_shapes);
if (input_shapes->size() == 0) {
MS_LOG(EXCEPTION) << "Invalid input shapes";
}
int first_dim_size = input_shapes->front();
int outer_dim_size = segment_size;
if (first_dim_size == 0 || outer_dim_size == 0) {
MS_LOG(ERROR) << "Invalid first dim size";
}
float *grad_data = reinterpret_cast<float *>(gradient()->addr);
int *indices_data = reinterpret_cast<int *>(indices()->addr);
size_t original_row_count = input_shapes->front();
if (original_row_count > 0) {
size_t offset = 0;
if ((original_row_count % server_num) == 0) {
offset = original_row_count / server_num * rank_id;
} else {
offset = std::round((static_cast<float>(original_row_count)) / server_num) * rank_id;
}
for (size_t i = 0; i < indices_size; i++) {
indices_data[i] -= offset;
}
}
Util::ReduceSparseGradient(grad_data, indices_data, indices_size, segment_size, first_dim_size, outer_dim_size,
&unique_sparse_grad);
int reduced_grad_size = unique_sparse_grad.indices_size_ * segment_size * sizeof(float);
auto ret = memcpy_s(gradient()->addr, reduced_grad_size, unique_sparse_grad.value_, reduced_grad_size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
int reduced_indice_size = unique_sparse_grad.indices_size_ * sizeof(int);
ret = memcpy_s(indices()->addr, reduced_indice_size, unique_sparse_grad.indices_, reduced_indice_size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
gradient()->size = reduced_grad_size;
indices()->size = reduced_indice_size;
for (size_t i = 0; i < unique_sparse_grad.indices_size_ * segment_size; i++) {
grad_data[i] = grad_data[i] / n;
}
delete[] new_grad;
delete[] new_indices;
}
void SparseOptimInfo::Reset() {
@ -135,6 +212,8 @@ void MomentumOptimInfo::Update(const Values &values, const Lengths &lens) {
}
}
const size_t SparseOptimInfo::indice_size() const { return indices_offset_; }
const AddressPtr &MomentumOptimInfo::gradient() { return inputs_[3]; }
const AddressPtr &MomentumOptimInfo::indices() { return inputs_[3]; }

View File

@ -18,6 +18,7 @@
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_PS_OPTIMIZER_INFO_H_
#include <vector>
#include <memory>
#include "backend/kernel_compiler/kernel.h"
#include "frontend/parallel/ps/common.h"
@ -33,12 +34,14 @@ class OptimizerInfo {
virtual void Update(const Values &values, const Lengths &lengths) {}
virtual void UpdateWeight(const WeightPtr &weight);
virtual void Accumulate(const Values &values, const Lengths &lengths) = 0;
virtual void ComputeMean(size_t n) {}
virtual void ComputeMean(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &shapes, size_t n,
size_t server_num, size_t rank_id) {}
virtual void Reset() {}
void AddWorkspace(const AddressPtr &workspace);
virtual const AddressPtr &gradient() = 0;
virtual const AddressPtr &indices() = 0;
virtual const size_t indice_size() const;
const std::vector<AddressPtr> &inputs();
const std::vector<AddressPtr> &workspaces();
const std::vector<AddressPtr> &outputs();
@ -59,7 +62,8 @@ class DenseOptimInfo : public OptimizerInfo {
~DenseOptimInfo() override = default;
void Accumulate(const Values &values, const Lengths &lens) override;
void ComputeMean(size_t n) override;
void ComputeMean(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &shapes, size_t n,
size_t server_num, size_t rank_id) override;
void Reset() override;
};
@ -69,7 +73,10 @@ class SparseOptimInfo : public OptimizerInfo {
~SparseOptimInfo() override = default;
void Accumulate(const Values &values, const Lengths &lens) override;
void ComputeMean(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &shapes, size_t n,
size_t server_num, size_t rank_id) override;
void Reset() override;
const size_t indice_size() const override;
protected:
size_t grads_offset_{0};

View File

@ -136,15 +136,21 @@ OptimizerInfo *SparseAdamOptimInfoBuilder::BuildInputs(const WeightPtr &weight,
const std::shared_ptr<std::vector<size_t>> &indices_shape = (*inputs_shape)[10];
size_t total_indice_size =
std::accumulate((*indices_shape).begin(), (*indices_shape).end(), sizeof(float), std::multiplies<size_t>());
std::accumulate((*indices_shape).begin(), (*indices_shape).end(), sizeof(int), std::multiplies<size_t>());
AddressPtr indices = std::make_shared<kernel::Address>();
indices->addr = new float[total_indice_size * worker_num];
ret = memcpy_s(indices->addr, lens[7] * sizeof(float), reinterpret_cast<float *>(epsilon->addr) + lens[5] + lens[6],
lens[7] * sizeof(float));
indices->addr = new int[total_indice_size * worker_num];
int *converted_indices = new int[lens[7]];
size_t indices_data_size = lens[7] * sizeof(int);
float *indices_data = reinterpret_cast<float *>(epsilon->addr) + lens[5] + lens[6];
for (int i = 0; i < lens[7]; i++) {
converted_indices[i] = static_cast<int>(indices_data[i]);
}
ret = memcpy_s(indices->addr, indices_data_size, converted_indices, indices_data_size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
indices->size = lens[7] * sizeof(int);
indices->size = indices_data_size;
delete[] converted_indices;
return new SparseAdamOptimInfo(weight_addr, m, v, beta1_power, beta2_power, learning_rate, beta1, beta2, epsilon,
grad, indices);
@ -185,13 +191,19 @@ OptimizerInfo *SparseFtrlOptimInfoBuilder::BuildInputs(const WeightPtr &weight,
size_t total_indice_size =
std::accumulate((*indices_shape).begin(), (*indices_shape).end(), 1, std::multiplies<size_t>());
AddressPtr indices = std::make_shared<kernel::Address>();
indices->addr = new float[total_indice_size * worker_num];
ret = memcpy_s(indices->addr, lens[1] * sizeof(float), reinterpret_cast<float *>(values.data()) + lens[0],
lens[1] * sizeof(float));
indices->addr = new int[total_indice_size * worker_num];
int *converted_indices = new int[lens[1]];
size_t indices_data_size = lens[1] * sizeof(int);
float *indices_data = reinterpret_cast<float *>(values.data()) + lens[0];
for (int i = 0; i < lens[1]; i++) {
converted_indices[i] = static_cast<int>(indices_data[i]);
}
ret = memcpy_s(indices->addr, indices_data_size, converted_indices, indices_data_size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
indices->size = lens[1] * sizeof(int);
indices->size = indices_data_size;
delete[] converted_indices;
return new SparseFtrlOptimInfo(weight_addr, accum, linear, grad, indices);
}

View File

@ -145,6 +145,7 @@ class ParameterServer {
std::unordered_map<Key, std::shared_ptr<PServerKernel>> optimizers_;
std::unordered_map<Key, InputsShapePtr> optim_inputs_shape_;
std::unordered_map<Key, InputsShapePtr> original_optim_inputs_shape_;
std::unordered_map<Key, std::shared_ptr<OptimizerInfo>> optim_infos_;
std::unordered_map<std::string, std::shared_ptr<OptimizerInfoBuilder>> optim_info_builders_;
std::unordered_map<Key, std::string> weight_key_to_optims_;
@ -366,19 +367,24 @@ void ParameterServer<T>::InitWeightKeyToOptims(const Key &key, const int &optim_
template <typename T>
void ParameterServer<T>::InitOptimInputsShape(const Keys &keys, const Values &values, const Lengths &lengths) {
InputsShapePtr inputs_shape = std::make_shared<InputsShape>();
InputsShapePtr original_inputs_shape = std::make_shared<InputsShape>();
int val_idx = 0;
const Key &key = keys[0];
MS_LOG(INFO) << "Initializing optimizer inputs shape for key:" << key;
if (optim_inputs_shape_.count(key) == 0) {
original_optim_inputs_shape_[key] = original_inputs_shape;
optim_inputs_shape_[key] = inputs_shape;
}
for (size_t i = 0; i < keys.size(); i++) {
auto shape = std::make_shared<std::vector<size_t>>();
auto original_shape = std::make_shared<std::vector<size_t>>();
inputs_shape->push_back(shape);
original_inputs_shape->push_back(original_shape);
int len = lengths[i];
for (int j = 0; j < len; j++) {
shape->push_back(values[val_idx++]);
shape->push_back(values[val_idx]);
original_shape->push_back(values[val_idx++]);
}
}
if (weight_key_to_optims_.count(key) > 0) {
@ -512,7 +518,19 @@ void ParameterServer<T>::UpdateWeights() {
const std::vector<kernel::AddressPtr> &workspaces = optim_info->workspaces();
const std::vector<kernel::AddressPtr> &outputs = optim_info->outputs();
optim_info->ComputeMean(worker_num_);
std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> shapes =
std::make_shared<std::vector<std::shared_ptr<std::vector<size_t>>>>();
std::shared_ptr<std::vector<size_t>> indices_shape = std::make_shared<std::vector<size_t>>();
indices_shape->emplace_back(optim_info->indice_size());
shapes->push_back(indices_shape);
if (original_optim_inputs_shape_.count(key) != 0) {
for (auto &input_shapes : *(original_optim_inputs_shape_[key])) {
shapes->push_back(input_shapes);
}
}
optimizer->ReInit(shapes);
optim_info->ComputeMean(shapes, worker_num_, pserver_num_, rank_id_);
optimizer->Execute(inputs, workspaces, outputs);
optim_info->Reset();
if (!is_embedding_[key]) {

View File

@ -146,6 +146,32 @@ int Util::LocalShard(int first_dim, int rank_id, int server_num) {
void Util::SetRankId(int rank_id) { rank_id_ = rank_id; }
int Util::GetRankId() { return rank_id_; }
void Util::ReduceSparseGradient(float *gradients, int *indices, const size_t indices_size, size_t segment_size,
const size_t first_dim_size, const size_t outer_dim_size,
mindspore::kernel::SparseGradient *unique_sparse_grad) {
size_t slice_segment_size = indices_size * segment_size;
auto workspace_grad = new float[slice_segment_size];
auto workspace_indices = new int[indices_size];
MS_EXCEPTION_IF_NULL(gradients);
MS_EXCEPTION_IF_NULL(indices);
MS_EXCEPTION_IF_NULL(workspace_grad);
MS_EXCEPTION_IF_NULL(workspace_indices);
mindspore::kernel::SparseGradient workspace_sparse_grad({workspace_grad, workspace_indices, indices_size});
mindspore::kernel::SparseGradient input_sparse_grad({gradients, indices, indices_size});
mindspore::kernel::ReduceSparseGradientParam param;
param.input_grad_ = &input_sparse_grad;
param.workspace_grad_ = &workspace_sparse_grad;
param.output_grad_ = unique_sparse_grad;
param.max_index_ = first_dim_size;
param.value_stride_ = outer_dim_size;
BucketReduceSparseGradient(param);
delete[] workspace_grad;
delete[] workspace_indices;
}
} // namespace ps
} // namespace parallel
} // namespace mindspore

View File

@ -21,6 +21,7 @@
#include <string>
#include <unordered_map>
#include "backend/session/anf_runtime_algorithm.h"
#include "backend/kernel_compiler/common_utils.h"
namespace mindspore {
namespace parallel {
@ -39,6 +40,9 @@ class Util {
static int LocalShard(int first_dim, int rank_id, int server_num);
static void SetRankId(int rank_id);
static int GetRankId();
static void ReduceSparseGradient(float *gradients, int *indices, const size_t indices_size, size_t segment_size,
const size_t first_dim_size, const size_t outer_dim_size,
mindspore::kernel::SparseGradient *unique_sparse_grad);
private:
static std::unordered_map<std::string, int> optimizer_to_ids;

View File

@ -95,6 +95,32 @@ void Worker<T>::Run() {
template <typename T>
void Worker<T>::Push(const std::vector<size_t> &keys, std::vector<uintptr_t> addrs, const std::vector<int> &sizes) {
if (keys.size() == 0) {
MS_LOG(EXCEPTION) << "key size should be greater than zero";
}
if (key_to_optimId_.count(keys[0]) == 0) {
MS_LOG(EXCEPTION) << "no optim id found for key" << keys[0];
}
Key key = keys[0];
int optim_id = key_to_optimId_[key];
bool is_sparse = false;
if (optim_id == 1 || optim_id == 2 || optim_id == 3) {
is_sparse = true;
}
int grad_index = -1;
int indice_index = -1;
// Sparse adam gradient
if (optim_id == 1 || optim_id == 2) {
grad_index = 6;
indice_index = 7;
// Sparse ftrl gradient
} else if (optim_id == 3) {
grad_index = 0;
indice_index = 1;
}
size_t total_size = 0;
for (auto size : sizes) {
total_size += size;
@ -109,10 +135,22 @@ void Worker<T>::Push(const std::vector<size_t> &keys, std::vector<uintptr_t> add
}
offset += sizes[i] * sizeof(T);
}
while (!kv_worker_->IsReadyForPush(keys[0])) {
continue;
}
if (!is_sparse) {
kv_worker_->PushData(::ps::SArray<::ps::Key>(keys), total_buffer, ::ps::SArray<int>(sizes));
} else {
std::vector<int> &var_shape = key_to_optim_shapes_[key][0];
int first_dim_size = var_shape[0];
int outer_dim_size = 1;
for (size_t i = 1; i < var_shape.size(); ++i) {
outer_dim_size *= var_shape[i];
}
kv_worker_->PushSparseData(::ps::SArray<::ps::Key>(keys), total_buffer, ::ps::SArray<int>(sizes), grad_index,
indice_index, first_dim_size, outer_dim_size);
}
}
template <typename T>

View File

@ -17,14 +17,16 @@
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_PS_WORKER_PROXY_H_
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_PS_WORKER_PROXY_H_
#include <map>
#include <unordered_map>
#include <unordered_set>
#include <algorithm>
#include <utility>
#include <memory>
#include <vector>
#include <unordered_set>
#include "ps/ps.h"
#include "frontend/parallel/ps/util.h"
#include "backend/kernel_compiler/common_utils.h"
namespace mindspore {
namespace parallel {
@ -36,7 +38,7 @@ class WorkerProxy : public ::ps::KVWorker<T> {
using Callback = std::function<void()>;
using SlicedKVs = std::vector<std::pair<bool, ::ps::KVPairs<T>>>;
using Slicer = std::function<void(int ts, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &ranges,
SlicedKVs *sliced)>;
SlicedKVs *sliced, const std::map<int, int> &attrs)>;
using ::ps::SimpleApp::obj_;
explicit WorkerProxy(int app_id, int customer_id, int lookup_customer_id, int general_customer_id)
: Worker(app_id, customer_id) {
@ -46,14 +48,16 @@ class WorkerProxy : public ::ps::KVWorker<T> {
using std::placeholders::_2;
using std::placeholders::_3;
using std::placeholders::_4;
using std::placeholders::_5;
lookup_customer_ = std::unique_ptr<::ps::Customer>(
new ::ps::Customer(app_id, lookup_customer_id, std::bind(&WorkerProxy<T>::ProcessLookupResult, this, _1)));
general_customer_ = std::unique_ptr<::ps::Customer>(
new ::ps::Customer(app_id, general_customer_id, std::bind(&WorkerProxy<T>::ProcessResponse, this, _1)));
lookup_slicer_ = std::bind(&WorkerProxy<T>::LookupIdSlicer, this, _1, _2, _3, _4);
broadcast_slicer_ = std::bind(&WorkerProxy<T>::BroadcastSlicer, this, _1, _2, _3, _4);
round_robin_slicer_ = std::bind(&WorkerProxy<T>::RoundRobinSlicer, this, _1, _2, _3, _4);
worker_init_embedding_slicer_ = std::bind(&WorkerProxy<T>::WorkerInitEmbeddingSlicer, this, _1, _2, _3, _4);
lookup_slicer_ = std::bind(&WorkerProxy<T>::LookupIdSlicer, this, _1, _2, _3, _4, _5);
sparse_slicer_ = std::bind(&WorkerProxy<T>::SparseSlicer, this, _1, _2, _3, _4, _5);
broadcast_slicer_ = std::bind(&WorkerProxy<T>::BroadcastSlicer, this, _1, _2, _3, _4, _5);
round_robin_slicer_ = std::bind(&WorkerProxy<T>::RoundRobinSlicer, this, _1, _2, _3, _4, _5);
worker_init_embedding_slicer_ = std::bind(&WorkerProxy<T>::WorkerInitEmbeddingSlicer, this, _1, _2, _3, _4, _5);
}
~WorkerProxy() override = default;
@ -68,6 +72,8 @@ class WorkerProxy : public ::ps::KVWorker<T> {
bool IsReadyForPull(const Key &key);
void PushData(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<T> &vals, const ::ps::SArray<int> &lens = {},
int cmd = 0, int priority = 0);
void PushSparseData(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<T> &vals, const ::ps::SArray<int> &lens,
size_t grad_index, size_t indice_index, size_t first_dim_size, size_t outer_dim_size);
void PullData(const ::ps::SArray<::ps::Key> &keys, ::ps::SArray<T> *vals, ::ps::SArray<int> *lens = nullptr,
int cmd = 0, int priority = 0);
void Finalize();
@ -79,19 +85,28 @@ class WorkerProxy : public ::ps::KVWorker<T> {
int AddGeneralRspCB(const ::ps::SArray<::ps::Key> &keys, ::ps::SArray<T> *vals, ::ps::SArray<int> *lens, int cmd,
const Callback &cb);
void LookupIdSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced);
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced, const std::map<int, int> &attrs);
void SparseSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced, const std::map<int, int> &attrs);
void BroadcastSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced);
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced, const std::map<int, int> &attrs);
void RoundRobinSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced);
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced, const std::map<int, int> &attrs);
void WorkerInitEmbeddingSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced);
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced,
const std::map<int, int> &attrs);
void ProcessLookupResult(const ::ps::Message &msg);
void ProcessResponse(const ::ps::Message &msg);
void Send(::ps::Customer *customer, int timestamp, bool push, bool pull, int cmd, const ::ps::KVPairs<T> &kvs,
const Slicer &slicer);
const Slicer &slicer, std::map<int, int> attrs = {});
void AddKeyByHashMod(const ::ps::Key &key);
void PrepareSparseGradient(const size_t begin, const size_t end, const std::unordered_set<int> &distinct_ids,
const std::vector<std::pair<int, T *>> &indice_to_grad, const int *all_indice,
const size_t segment_size, T *gradient, int *indice);
void BuildSparseValue(const ::ps::SArray<int> &lengths, const size_t grad_index, const size_t indice_index,
const T *original_data, const T *grads, int *indices, ::ps::SArray<T> *reduced_data);
int server_num_;
std::unique_ptr<::ps::Customer> lookup_customer_;
std::unique_ptr<::ps::Customer> general_customer_;
@ -100,6 +115,7 @@ class WorkerProxy : public ::ps::KVWorker<T> {
std::unordered_map<int, ::ps::KVPairs<T>> gathered_response_;
std::mutex mutex_;
Slicer lookup_slicer_;
Slicer sparse_slicer_;
Slicer broadcast_slicer_;
Slicer round_robin_slicer_;
Slicer worker_init_embedding_slicer_;
@ -221,6 +237,28 @@ void WorkerProxy<T>::PushData(const ::ps::SArray<::ps::Key> &keys, const ::ps::S
general_customer_->WaitRequest(ts);
}
template <typename T>
void WorkerProxy<T>::PushSparseData(const ::ps::SArray<::ps::Key> &keys, const ::ps::SArray<T> &vals,
const ::ps::SArray<int> &lens, size_t grad_index, size_t indice_index,
size_t first_dim_size, size_t outer_dim_size) {
int ts = AddGeneralRspCB(keys, nullptr, nullptr, 0, nullptr);
::ps::KVPairs<T> kvs;
kvs.keys = keys;
kvs.vals = vals;
kvs.lens = lens;
int cmd = 0;
if (embedding_table_ranges_.count(keys[0])) {
std::map<int, int> attrs{{0, grad_index}, {1, indice_index}, {2, first_dim_size}, {3, outer_dim_size}};
Send(general_customer_.get(), ts, true, false, cmd, kvs, sparse_slicer_, attrs);
} else {
Send(general_customer_.get(), ts, true, false, cmd, kvs, round_robin_slicer_);
}
if (expected_result_count_[ts] < server_num_) {
general_customer_->AddResponse(ts, server_num_ - expected_result_count_[ts]);
}
general_customer_->WaitRequest(ts);
}
template <typename T>
void WorkerProxy<T>::PullData(const ::ps::SArray<::ps::Key> &keys, ::ps::SArray<T> *vals, ::ps::SArray<int> *lens,
int cmd, int priority) {
@ -320,7 +358,8 @@ int WorkerProxy<T>::AddGeneralRspCB(const ::ps::SArray<::ps::Key> &keys, ::ps::S
template <typename T>
void WorkerProxy<T>::LookupIdSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced) {
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced,
const std::map<int, int> &attrs) {
int *lookup_ids = send.lens.data();
size_t id_size = send.lens.size();
@ -358,9 +397,181 @@ void WorkerProxy<T>::LookupIdSlicer(int timestamp, const ::ps::KVPairs<T> &send,
}
}
template <typename T>
void WorkerProxy<T>::SparseSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced,
const std::map<int, int> &attrs) {
// Init variables
T *data = send.vals.data();
if (attrs.count(0) == 0 || attrs.count(1) == 0 || attrs.count(2) == 0 || attrs.count(3) == 0) {
MS_LOG(EXCEPTION) << "Invalid attrs keys";
}
auto iter = attrs.find(0);
size_t grad_index = static_cast<size_t>(iter->second);
iter = attrs.find(1);
size_t indice_index = static_cast<size_t>(iter->second);
iter = attrs.find(2);
size_t first_dim_size = static_cast<size_t>(iter->second);
iter = attrs.find(3);
size_t outer_dim_size = static_cast<size_t>(iter->second);
int grad_size = send.lens[grad_index];
int indice_size = send.lens[indice_index];
int segment_size = grad_size / indice_size;
int grad_offset = 0;
int indice_offset = 0;
for (size_t i = 0; i < grad_index; i++) {
grad_offset += send.lens[i];
}
for (size_t j = 0; j < indice_index; j++) {
indice_offset += send.lens[j];
}
T *grad_data = data + grad_offset;
int *indice_data = reinterpret_cast<int *>(data) + indice_offset;
// Build the mappings of indice to gradient
std::vector<std::pair<int, T *>> indice_to_grads;
for (int i = 0; i < indice_size; i++) {
int indice = indice_data[i];
T *grad = grad_data + i * segment_size;
indice_to_grads.push_back(std::make_pair(indice, grad));
}
const Key &key = send.keys[0];
const std::vector<::ps::Range> &ranges = *(embedding_table_ranges_[key]);
sliced->resize(ranges.size());
// Construct reduced sparse data for each server
for (size_t i = 0; i < ranges.size(); i++) {
const ::ps::Range &range = ranges[i];
const auto &begin = range.begin();
const auto &end = range.end();
auto &kvs = sliced->at(i).second;
kvs.keys = send.keys;
kvs.lens = send.lens;
// Prepare the sparse gradient and indice
std::vector<int> indice_ids;
std::unordered_set<int> distinct_ids;
for (int j = 0; j < indice_size; j++) {
size_t indice = static_cast<size_t>(indice_data[j]);
if (indice >= begin && indice <= end) {
indice_ids.push_back(indice);
distinct_ids.insert(indice);
}
}
size_t indices_size = indice_ids.size();
int slice_segment_size = indices_size * segment_size;
T *src_grad_data = new T[slice_segment_size];
int *src_indice_data = new int[indices_size];
PrepareSparseGradient(begin, end, distinct_ids, indice_to_grads, indice_data, segment_size, src_grad_data,
src_indice_data);
// Reduce the sparse gradient and indice
T *new_grad = new T[slice_segment_size];
int *new_indices = new int[indices_size];
mindspore::kernel::SparseGradient unique_sparse_grad({new_grad, new_indices, indices_size});
Util::ReduceSparseGradient(src_grad_data, src_indice_data, indices_size, segment_size, first_dim_size,
outer_dim_size, &unique_sparse_grad);
// Update the length of reduce sparse gradient and indice
::ps::SArray<int> reduced_lens;
reduced_lens.CopyFrom(kvs.lens);
reduced_lens[grad_index] = unique_sparse_grad.indices_size_ * segment_size;
reduced_lens[indice_index] = unique_sparse_grad.indices_size_;
// Build the sparse value to be sent
size_t total_size = 0;
for (auto size : reduced_lens) {
total_size += size;
}
::ps::SArray<T> reduced_data(total_size, 0);
BuildSparseValue(reduced_lens, grad_index, indice_index, data, unique_sparse_grad.value_,
unique_sparse_grad.indices_, &reduced_data);
kvs.lens = reduced_lens;
kvs.vals = reduced_data;
if (indices_size <= 0) {
sliced->at(i).first = false;
} else {
sliced->at(i).first = true;
expected_result_count_[timestamp] += 1;
}
}
}
template <typename T>
void WorkerProxy<T>::PrepareSparseGradient(const size_t begin, const size_t end,
const std::unordered_set<int> &distinct_ids,
const std::vector<std::pair<int, T *>> &indice_to_grads,
const int *all_indice, const size_t segment_size, T *gradient,
int *indices) {
int offset = 0;
int index = 0;
size_t segment_data_size = segment_size * sizeof(T);
for (auto &pair : indice_to_grads) {
if (distinct_ids.count(pair.first) == 0) {
continue;
}
indices[index++] = pair.first;
auto ret = memcpy_s(gradient + offset, segment_data_size, pair.second, segment_data_size);
if (ret != 0) {
MS_LOG(ERROR) << "memcpy_s error, errorno(" << ret << ")";
}
offset += segment_size;
}
}
template <typename T>
void WorkerProxy<T>::BuildSparseValue(const ::ps::SArray<int> &lengths, const size_t grad_index,
const size_t indice_index, const T *original_data, const T *grads, int *indices,
::ps::SArray<T> *reduced_data) {
int offset = 0;
for (size_t i = 0; i < lengths.size(); i++) {
if (i != grad_index && i != indice_index) {
int data_size = lengths[i] * sizeof(T);
auto ret = memcpy_s(reduced_data->data() + offset, data_size, original_data + offset, data_size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
}
offset += lengths[i];
}
// Fill the reduced gradient
int grad_offset = 0;
for (size_t i = 0; i < grad_index; i++) {
grad_offset += lengths[i];
}
int data_size = lengths[grad_index] * sizeof(T);
auto ret = memcpy_s(reduced_data->data() + grad_offset, data_size, grads, data_size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
// Fill the reduced indice
data_size = lengths[indice_index] * sizeof(T);
int indice_offset = grad_offset + data_size;
T *indice_data = reduced_data->data() + indice_offset;
T *convert = new T[lengths[indice_index]];
for (int i = 0; i < lengths[indice_index]; i++) {
convert[i] = static_cast<T>(indices[i]);
}
ret = memcpy_s(indice_data, data_size, convert, data_size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
delete[] convert;
}
template <typename T>
void WorkerProxy<T>::BroadcastSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced) {
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced,
const std::map<int, int> &attr) {
sliced->resize(server_num_);
for (int i = 0; i < server_num_; i++) {
sliced->at(i).first = true;
@ -371,7 +582,8 @@ void WorkerProxy<T>::BroadcastSlicer(int timestamp, const ::ps::KVPairs<T> &send
template <typename T>
void WorkerProxy<T>::RoundRobinSlicer(int timestamp, const ::ps::KVPairs<T> &send, const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced) {
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced,
const std::map<int, int> &attr) {
sliced->resize(server_num_);
auto keys = send.keys;
auto vals = send.vals;
@ -408,7 +620,8 @@ void WorkerProxy<T>::RoundRobinSlicer(int timestamp, const ::ps::KVPairs<T> &sen
template <typename T>
void WorkerProxy<T>::WorkerInitEmbeddingSlicer(int timestamp, const ::ps::KVPairs<T> &send,
const std::vector<::ps::Range> &,
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced) {
std::vector<std::pair<bool, ::ps::KVPairs<T>>> *sliced,
const std::map<int, int> &attrs) {
sliced->resize(server_num_);
auto keys = send.keys;
auto vals = send.vals;
@ -483,9 +696,9 @@ void WorkerProxy<T>::ProcessResponse(const ::ps::Message &msg) {
template <typename T>
void WorkerProxy<T>::Send(::ps::Customer *customer, int timestamp, bool push, bool pull, int cmd,
const ::ps::KVPairs<T> &kvs, const Slicer &slicer) {
const ::ps::KVPairs<T> &kvs, const Slicer &slicer, std::map<int, int> attrs) {
SlicedKVs sliced;
slicer(timestamp, kvs, ::ps::Postoffice::Get()->GetServerKeyRanges(), &sliced);
slicer(timestamp, kvs, ::ps::Postoffice::Get()->GetServerKeyRanges(), &sliced, attrs);
for (size_t i = 0; i < sliced.size(); i++) {
const auto &s = sliced[i];