forked from mindspore-Ecosystem/mindspore
add LarsV2 fission pass
This commit is contained in:
parent
a3e29e61f5
commit
c4af71e236
|
@ -0,0 +1,91 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "pre_activate/ascend/ir_fission/lars_v2_fission.h"
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include "session/anf_runtime_algorithm.h"
|
||||
#include "pre_activate/common/helper.h"
|
||||
#include "utils/utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
namespace {
|
||||
void CreateOutputsOfSquareSumAll(const FuncGraphPtr &graph, const CNodePtr &lars_v2,
|
||||
std::vector<AnfNodePtr> *square_sum_all_outputs) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(lars_v2);
|
||||
if (lars_v2->size() != kLarsV2InputNum) {
|
||||
MS_LOG(EXCEPTION) << "Op lars_v2's input not equal " << kLarsV2InputNum;
|
||||
}
|
||||
|
||||
std::vector<AnfNodePtr> inputs = {NewValueNode(std::make_shared<Primitive>(kSquareSumAllOpName))};
|
||||
inputs.push_back(lars_v2->input(1));
|
||||
inputs.push_back(lars_v2->input(2));
|
||||
auto square_sum_all = graph->NewCNode(inputs);
|
||||
MS_EXCEPTION_IF_NULL(square_sum_all);
|
||||
square_sum_all->set_scope(lars_v2->scope());
|
||||
|
||||
auto types = {kNumberTypeFloat32, kNumberTypeFloat32};
|
||||
std::vector<size_t> shape;
|
||||
auto shapes = {shape, shape};
|
||||
AnfAlgo::SetOutputInferTypeAndShape(types, shapes, square_sum_all.get());
|
||||
|
||||
CreateMultipleOutputsOfAnfNode(graph, square_sum_all, 2, square_sum_all_outputs);
|
||||
}
|
||||
|
||||
CNodePtr CreateLarsV2Update(const FuncGraphPtr &graph, const CNodePtr &lars_v2,
|
||||
const std::vector<AnfNodePtr> &square_sum_all_outputs) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(lars_v2);
|
||||
if (square_sum_all_outputs.size() != 2) {
|
||||
MS_LOG(EXCEPTION) << "square_sum_all_outputs' size not equal 2";
|
||||
}
|
||||
if (lars_v2->size() != kLarsV2InputNum) {
|
||||
MS_LOG(EXCEPTION) << "Op lars_v2's input not equal " << kLarsV2InputNum;
|
||||
}
|
||||
std::vector<AnfNodePtr> inputs = {NewValueNode(std::make_shared<Primitive>(kLarsV2UpdateOpName))};
|
||||
inputs.push_back(lars_v2->input(1));
|
||||
inputs.push_back(lars_v2->input(2));
|
||||
inputs.push_back(square_sum_all_outputs[0]);
|
||||
inputs.push_back(square_sum_all_outputs[1]);
|
||||
inputs.push_back(lars_v2->input(3));
|
||||
inputs.push_back(lars_v2->input(4));
|
||||
auto lars_v2_update = graph->NewCNode(inputs);
|
||||
MS_EXCEPTION_IF_NULL(lars_v2_update);
|
||||
lars_v2_update->set_scope(lars_v2->scope());
|
||||
lars_v2_update->set_abstract(lars_v2->abstract());
|
||||
return lars_v2_update;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
const BaseRef LarsV2Fission::DefinePattern() const {
|
||||
VarPtr Xs = std::make_shared<SeqVar>();
|
||||
auto lars_v2_prim = std::make_shared<Primitive>(kLarsV2OpName);
|
||||
return VectorRef({lars_v2_prim, Xs});
|
||||
}
|
||||
|
||||
const AnfNodePtr LarsV2Fission::Process(const FuncGraphPtr &graph, const AnfNodePtr &node, const EquivPtr &) const {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
auto lars_v2 = node->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(lars_v2);
|
||||
|
||||
std::vector<AnfNodePtr> square_sum_all_outputs;
|
||||
CreateOutputsOfSquareSumAll(graph, lars_v2, &square_sum_all_outputs);
|
||||
return CreateLarsV2Update(graph, lars_v2, square_sum_all_outputs);
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,32 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_LARS_V2_FISSION_H_
|
||||
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_LARS_V2_FISSION_H_
|
||||
|
||||
#include "pre_activate/common/optimizer.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class LarsV2Fission : public PatternProcessPass {
|
||||
public:
|
||||
explicit LarsV2Fission(bool multigraph = true) : PatternProcessPass("lars_v2_fission", multigraph) {}
|
||||
~LarsV2Fission() override = default;
|
||||
const BaseRef DefinePattern() const override;
|
||||
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||
};
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_LARS_V2_FISSION_H_
|
|
@ -91,6 +91,7 @@ constexpr size_t kBackendTransDataInputNum = 2;
|
|||
constexpr size_t kApplyMomentumInputNum = 6;
|
||||
constexpr size_t kBiasAddInputNum = 3;
|
||||
constexpr size_t kTopkInputNum = 3;
|
||||
constexpr size_t kLarsV2InputNum = 5;
|
||||
|
||||
enum FusedBatchNormInput {
|
||||
kX = 1,
|
||||
|
|
|
@ -144,6 +144,9 @@ constexpr auto kBNInferGradOpName = "BNInferGrad";
|
|||
constexpr auto kCallOpName = "call";
|
||||
constexpr auto kPartialOpName = "partial";
|
||||
constexpr auto kSwitchOpName = "switch";
|
||||
constexpr auto kLarsV2OpName = "LarsV2";
|
||||
constexpr auto kLarsV2UpdateOpName = "LarsV2Update";
|
||||
constexpr auto kSquareSumAllOpName = "SquareSumAll";
|
||||
|
||||
// attr key name
|
||||
constexpr auto kAttrInputNames = "input_names";
|
||||
|
|
|
@ -0,0 +1,56 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "common/backend_common_test.h"
|
||||
#include "common/py_func_graph_fetcher.h"
|
||||
#include "pre_activate/ascend/ir_fission/lars_v2_fission.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class TestHWLarsV2Fission : public BackendCommon {
|
||||
public:
|
||||
TestHWLarsV2Fission() : get_py_fun_("gtest_input.pre_activate.lars_v2_fission_test", true) {}
|
||||
~TestHWLarsV2Fission() override = default;
|
||||
|
||||
UT::PyFuncGraphFetcher get_py_fun_;
|
||||
};
|
||||
|
||||
TEST_F(TestHWLarsV2Fission, test_fission) {
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_lars_v2_fission", "before");
|
||||
EXPECT_NE(g, nullptr);
|
||||
|
||||
// set abstract for all nodes in g
|
||||
std::vector<int> shp{2, 32, 224, 224};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||
g->get_return()->input(1)->set_abstract(x_abstract);
|
||||
for (auto &p: g->parameters()){
|
||||
p->set_abstract(x_abstract);
|
||||
}
|
||||
AbstractBasePtrList args_spec_list;
|
||||
auto kg = GetKernelGraph(g, args_spec_list, false);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
pm->AddPass(std::make_shared<opt::LarsV2Fission>());
|
||||
optimizer->AddPassManager(pm);
|
||||
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_lars_v2_fission", "after");
|
||||
EXPECT_NE(g_after, nullptr);
|
||||
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,50 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from mindspore.ops import Primitive
|
||||
|
||||
lars_v2 = Primitive('LarsV2')
|
||||
square_sum_all = Primitive('SquareSumAll')
|
||||
lars_v2_update = Primitive('LarsV2Update')
|
||||
make_tuple = Primitive('make_tuple')
|
||||
tuple_getitem = Primitive('tuple_getitem')
|
||||
|
||||
class FnDict:
|
||||
def __init__(self):
|
||||
self.fnDict = {}
|
||||
|
||||
def __call__(self, fn):
|
||||
self.fnDict[fn.__name__] = fn
|
||||
|
||||
def __getitem__(self, name):
|
||||
return self.fnDict[name]
|
||||
|
||||
def test_lars_v2_fission(tag):
|
||||
fns = FnDict()
|
||||
|
||||
@fns
|
||||
def before(input0, input1, input2, input3):
|
||||
res = lars_v2(input0, input1, input2, input3)
|
||||
return res
|
||||
|
||||
@fns
|
||||
def after(input0, input1, input2, input3):
|
||||
res = square_sum_all(input0, input1)
|
||||
item0 = tuple_getitem(res, 0)
|
||||
item1 = tuple_getitem(res, 1)
|
||||
res = lars_v2_update(input0, input1, item0, item1, input2, input3)
|
||||
return make_tuple(res)
|
||||
|
||||
return fns[tag]
|
Loading…
Reference in New Issue