forked from mindspore-Ecosystem/mindspore
!588 Add ReluV2/ReluGradV2/ConfusionMulGrad ops for VM
Merge pull request !588 from liuxiao/add-reluv2
This commit is contained in:
commit
c0825e18a7
|
@ -33,6 +33,7 @@ static std::map<string, string> tbe_func_adapter_map = {
|
||||||
{"re_lu6", "relu6"},
|
{"re_lu6", "relu6"},
|
||||||
{"re_lu6_grad", "relu6_grad"},
|
{"re_lu6_grad", "relu6_grad"},
|
||||||
{"re_lu", "relu"},
|
{"re_lu", "relu"},
|
||||||
|
{"re_luv2", "relu_v2"},
|
||||||
{"tensor_add", "add"},
|
{"tensor_add", "add"},
|
||||||
{"reduce_mean", "reduce_mean_d"},
|
{"reduce_mean", "reduce_mean_d"},
|
||||||
{"reduce_max", "reduce_max_d"},
|
{"reduce_max", "reduce_max_d"},
|
||||||
|
|
|
@ -227,6 +227,18 @@ def get_bprop_relu6(self):
|
||||||
return bprop
|
return bprop
|
||||||
|
|
||||||
|
|
||||||
|
@bprop_getters.register(P.ReLUV2)
|
||||||
|
def get_bprop_relu_v2(self):
|
||||||
|
"""Grad definition for `ReLUV2` operation."""
|
||||||
|
input_grad = G.ReluGradV2()
|
||||||
|
|
||||||
|
def bprop(x, out, dout):
|
||||||
|
mask = out[1]
|
||||||
|
dx = input_grad(dout[0], mask)
|
||||||
|
return (dx,)
|
||||||
|
return bprop
|
||||||
|
|
||||||
|
|
||||||
@bprop_getters.register(P.HSwish)
|
@bprop_getters.register(P.HSwish)
|
||||||
def get_bprop_hswish(self):
|
def get_bprop_hswish(self):
|
||||||
"""Grad definition for `HSwish` operation."""
|
"""Grad definition for `HSwish` operation."""
|
||||||
|
|
|
@ -33,6 +33,7 @@ from .cast import _cast_tbe
|
||||||
from .conv2d import _conv2d_tbe
|
from .conv2d import _conv2d_tbe
|
||||||
from .conv2d_backprop_filter import _conv2d_backprop_filter_tbe
|
from .conv2d_backprop_filter import _conv2d_backprop_filter_tbe
|
||||||
from .conv2d_backprop_input import _conv2d_backprop_input_tbe
|
from .conv2d_backprop_input import _conv2d_backprop_input_tbe
|
||||||
|
from .confusion_mul_grad import _confusion_mul_grad_tbe
|
||||||
from .dropout_do_mask import _dropout_do_mask_tbe
|
from .dropout_do_mask import _dropout_do_mask_tbe
|
||||||
from .gelu import _gelu_tbe
|
from .gelu import _gelu_tbe
|
||||||
from .gelu_grad import _gelu_grad_tbe
|
from .gelu_grad import _gelu_grad_tbe
|
||||||
|
@ -46,6 +47,8 @@ from .relu import _relu_tbe
|
||||||
from .relu_grad import _relu_grad_tbe
|
from .relu_grad import _relu_grad_tbe
|
||||||
from .relu6 import _relu6_tbe
|
from .relu6 import _relu6_tbe
|
||||||
from .relu6_grad import _relu6_grad_tbe
|
from .relu6_grad import _relu6_grad_tbe
|
||||||
|
from .relu_v2 import _relu_v2_tbe
|
||||||
|
from .relu_grad_v2 import _relu_grad_v2_tbe
|
||||||
from .softmax_cross_entropy_with_logits import _softmax_cross_entropy_with_logits_tbe
|
from .softmax_cross_entropy_with_logits import _softmax_cross_entropy_with_logits_tbe
|
||||||
from .sigmoid_cross_entropy_with_logits import _sigmoid_cross_entropy_with_logits_tbe
|
from .sigmoid_cross_entropy_with_logits import _sigmoid_cross_entropy_with_logits_tbe
|
||||||
from .sigmoid_cross_entropy_with_logits_grad import _sigmoid_cross_entropy_with_logits_grad_tbe
|
from .sigmoid_cross_entropy_with_logits_grad import _sigmoid_cross_entropy_with_logits_grad_tbe
|
||||||
|
|
|
@ -0,0 +1,38 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
"""ConfusionMulGrad op"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||||
|
|
||||||
|
confusion_mul_grad_op_info = TBERegOp("ConfusionMulGrad") \
|
||||||
|
.fusion_type("OPAQUE") \
|
||||||
|
.attr("axis", "required", "listInt", "all") \
|
||||||
|
.attr("keep_dims", "required", "bool", "all") \
|
||||||
|
.input(0, "input0", False, "required", "all") \
|
||||||
|
.input(1, "input1", False, "required", "all") \
|
||||||
|
.input(2, "input2", False, "required", "all") \
|
||||||
|
.output(0, "output0", False, "required", "all") \
|
||||||
|
.output(1, "output1", False, "required", "all") \
|
||||||
|
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default,
|
||||||
|
DataType.F16_Default, DataType.F16_Default) \
|
||||||
|
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
|
||||||
|
DataType.F32_Default, DataType.F32_Default) \
|
||||||
|
.get_op_info()
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register(confusion_mul_grad_op_info)
|
||||||
|
def _confusion_mul_grad_tbe():
|
||||||
|
"""ConfusionMulGrad TBE register"""
|
||||||
|
return
|
|
@ -0,0 +1,40 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
"""ReluGradV2 op"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||||
|
|
||||||
|
relu_grad_v2_op_info = TBERegOp("ReluGradV2") \
|
||||||
|
.fusion_type("ELEMWISE") \
|
||||||
|
.async_flag(False) \
|
||||||
|
.binfile_name("relu_grad_v2.so") \
|
||||||
|
.compute_cost(10) \
|
||||||
|
.kernel_name("relu_grad_v2") \
|
||||||
|
.partial_flag(True) \
|
||||||
|
.input(0, "gradients", False, "required", "all") \
|
||||||
|
.input(1, "mask", False, "rerequired", "all") \
|
||||||
|
.output(0, "backprops", True, "required", "all") \
|
||||||
|
.dtype_format(DataType.F16_5HD, DataType.U8_Default, DataType.F16_5HD) \
|
||||||
|
.dtype_format(DataType.F32_5HD, DataType.U8_Default, DataType.F32_5HD) \
|
||||||
|
.dtype_format(DataType.I32_5HD, DataType.U8_Default, DataType.I32_5HD) \
|
||||||
|
.dtype_format(DataType.I8_5HD, DataType.U8_Default, DataType.I8_5HD) \
|
||||||
|
.dtype_format(DataType.U8_5HD, DataType.U8_Default, DataType.U8_5HD) \
|
||||||
|
.get_op_info()
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register(relu_grad_v2_op_info)
|
||||||
|
def _relu_grad_v2_tbe():
|
||||||
|
"""ReluGradV2 TBE register"""
|
||||||
|
return
|
|
@ -0,0 +1,40 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
"""ReluV2 op"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||||
|
|
||||||
|
relu_v2_op_info = TBERegOp("ReLUV2") \
|
||||||
|
.fusion_type("ELEMWISE") \
|
||||||
|
.async_flag(False) \
|
||||||
|
.binfile_name("relu_v2.so") \
|
||||||
|
.compute_cost(10) \
|
||||||
|
.kernel_name("relu_v2") \
|
||||||
|
.partial_flag(True) \
|
||||||
|
.input(0, "x", False, "required", "all") \
|
||||||
|
.output(0, "y", False, "required", "all") \
|
||||||
|
.output(1, "mask", False, "required", "all") \
|
||||||
|
.dtype_format(DataType.F16_5HD, DataType.F16_5HD, DataType.U8_Default) \
|
||||||
|
.dtype_format(DataType.F32_5HD, DataType.F32_5HD, DataType.U8_Default) \
|
||||||
|
.dtype_format(DataType.I32_5HD, DataType.I32_5HD, DataType.U8_Default) \
|
||||||
|
.dtype_format(DataType.I8_5HD, DataType.I8_5HD, DataType.U8_Default) \
|
||||||
|
.dtype_format(DataType.U8_5HD, DataType.U8_5HD, DataType.U8_Default) \
|
||||||
|
.get_op_info()
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register(relu_v2_op_info)
|
||||||
|
def _relu_v2_tbe():
|
||||||
|
"""ReluV2 TBE register"""
|
||||||
|
return
|
|
@ -58,8 +58,8 @@ from .nn_ops import (LSTM, SGD, Adam, ApplyMomentum, BatchNorm,
|
||||||
GetNext, L2Normalize, LayerNorm, L2Loss,
|
GetNext, L2Normalize, LayerNorm, L2Loss,
|
||||||
LogSoftmax,
|
LogSoftmax,
|
||||||
MaxPool, ExtractImagePatches,
|
MaxPool, ExtractImagePatches,
|
||||||
AvgPool, Conv2DBackpropInput,
|
AvgPool, Conv2DBackpropInput, ConfusionMulGrad,
|
||||||
MaxPoolWithArgmax, OneHot, Pad, MirrorPad, PReLU, ReLU, ReLU6, HSwish, HSigmoid,
|
MaxPoolWithArgmax, OneHot, Pad, MirrorPad, PReLU, ReLU, ReLU6, ReLUV2, HSwish, HSigmoid,
|
||||||
ResizeBilinear, Sigmoid,
|
ResizeBilinear, Sigmoid,
|
||||||
SigmoidCrossEntropyWithLogits,
|
SigmoidCrossEntropyWithLogits,
|
||||||
SmoothL1Loss, Softmax,
|
SmoothL1Loss, Softmax,
|
||||||
|
@ -101,6 +101,7 @@ __all__ = [
|
||||||
'LogSoftmax',
|
'LogSoftmax',
|
||||||
'SoftmaxCrossEntropyWithLogits',
|
'SoftmaxCrossEntropyWithLogits',
|
||||||
'ROIAlign',
|
'ROIAlign',
|
||||||
|
'ConfusionMulGrad',
|
||||||
'SparseSoftmaxCrossEntropyWithLogits',
|
'SparseSoftmaxCrossEntropyWithLogits',
|
||||||
'SGD',
|
'SGD',
|
||||||
'ApplyMomentum',
|
'ApplyMomentum',
|
||||||
|
@ -138,6 +139,7 @@ __all__ = [
|
||||||
'Split',
|
'Split',
|
||||||
'ReLU',
|
'ReLU',
|
||||||
'ReLU6',
|
'ReLU6',
|
||||||
|
'ReLUV2',
|
||||||
'Elu',
|
'Elu',
|
||||||
'Erf',
|
'Erf',
|
||||||
'Sigmoid',
|
'Sigmoid',
|
||||||
|
|
|
@ -730,6 +730,27 @@ class ReLU6Grad(PrimitiveWithInfer):
|
||||||
return x_dtype
|
return x_dtype
|
||||||
|
|
||||||
|
|
||||||
|
class ReluGradV2(PrimitiveWithInfer):
|
||||||
|
"""Performs grad of ReLUV2 operation."""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self):
|
||||||
|
self.init_prim_io_names(inputs=['gradients', 'mask'], outputs=['output'])
|
||||||
|
|
||||||
|
def __call__(self, gradients, mask):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def infer_shape(self, gradients_shape, mask_shape):
|
||||||
|
return gradients_shape
|
||||||
|
|
||||||
|
def infer_dtype(self, gradients_dtype, mask_dtype):
|
||||||
|
args_type = {'gradients': gradients_dtype, 'mask': mask_dtype}
|
||||||
|
validator.check_args_tensor(args_type)
|
||||||
|
validator.check_typename("gradients_dtype", gradients_dtype, mstype.number_type)
|
||||||
|
validator.check_typename("mask_dtype", mask_dtype, (mstype.uint8,))
|
||||||
|
return gradients_dtype
|
||||||
|
|
||||||
|
|
||||||
class EluGrad(PrimitiveWithInfer):
|
class EluGrad(PrimitiveWithInfer):
|
||||||
"""Performs grad of Elu operation."""
|
"""Performs grad of Elu operation."""
|
||||||
|
|
||||||
|
|
|
@ -1329,7 +1329,7 @@ class Concat(PrimitiveWithInfer):
|
||||||
|
|
||||||
def _get_pack_shape(x_shape, x_type, axis):
|
def _get_pack_shape(x_shape, x_type, axis):
|
||||||
"""for pack output shape"""
|
"""for pack output shape"""
|
||||||
validator.check_type("shape", x_shape, [tuple])
|
validator.check_type("shape", x_shape, [tuple, list])
|
||||||
validator.check_integer("len of input_x shape", len(x_shape), 0, Rel.GT)
|
validator.check_integer("len of input_x shape", len(x_shape), 0, Rel.GT)
|
||||||
validator.check_subclass("shape0", x_type[0], mstype.tensor)
|
validator.check_subclass("shape0", x_type[0], mstype.tensor)
|
||||||
validator.check_integer("len of input_x0 shape", len(x_shape[0]), 0, Rel.GT)
|
validator.check_integer("len of input_x0 shape", len(x_shape[0]), 0, Rel.GT)
|
||||||
|
|
|
@ -28,6 +28,7 @@ from ..._checkparam import Validator as validator
|
||||||
from ..._checkparam import Rel
|
from ..._checkparam import Rel
|
||||||
from ...common import dtype as mstype
|
from ...common import dtype as mstype
|
||||||
from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register
|
from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register
|
||||||
|
from ..operations.math_ops import _infer_shape_reduce
|
||||||
|
|
||||||
|
|
||||||
def _check_positive_int_or_tuple(arg_name, arg_value, prim_name, allow_four=False, ret_four=False):
|
def _check_positive_int_or_tuple(arg_name, arg_value, prim_name, allow_four=False, ret_four=False):
|
||||||
|
@ -233,6 +234,62 @@ class ReLU6(PrimitiveWithInfer):
|
||||||
return input_x
|
return input_x
|
||||||
|
|
||||||
|
|
||||||
|
class ReLUV2(PrimitiveWithInfer):
|
||||||
|
r"""
|
||||||
|
Computes ReLU(Rectified Linear Unit) of input tensor element-wise.
|
||||||
|
|
||||||
|
It returns :math:`\max(x,\ 0)` element-wise.
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **input_x** (Tensor) - The input tensor should be a 4-D tensor.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
- **output** (Tensor) - Has the same type and shape as the `input_x`.
|
||||||
|
- **mask** (Tensor) - A tensor whose data type must be uint8.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> input_x = Tensor(np.array([[[[1, -2], [-3, 4]], [[-5, 6], [7, -8]]]]), mindspore.float32)
|
||||||
|
>>> relu_v2 = P.ReLUV2()
|
||||||
|
>>> output = relu_v2(input_x)
|
||||||
|
([[[[1., 0.], [0., 4.]], [[0., 6.], [7., 0.]]]],
|
||||||
|
[[[[1, 0], [2, 0]], [[2, 0], [1, 0]]]])
|
||||||
|
"""
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self):
|
||||||
|
"""init ReLUV2"""
|
||||||
|
self.init_prim_io_names(inputs=['x'], outputs=['output', 'mask'])
|
||||||
|
|
||||||
|
def __infer__(self, input_x):
|
||||||
|
input_shape = list(input_x['shape'])
|
||||||
|
input_dtype = input_x['dtype']
|
||||||
|
mask_shape = []
|
||||||
|
if len(input_shape) != 4:
|
||||||
|
raise ValueError("The `input_x` should be a 4-D tensor, "
|
||||||
|
f"but got a {len(input_shape)}-D tensor whose shape is {input_shape}")
|
||||||
|
for i in enumerate(input_shape):
|
||||||
|
if i[0] == 1:
|
||||||
|
if input_dtype == mstype.uint8 and input_dtype == mstype.int8:
|
||||||
|
mask_shape.append((input_shape[1] + 31) // 32)
|
||||||
|
else:
|
||||||
|
mask_shape.append((input_shape[1] + 15) // 16)
|
||||||
|
else:
|
||||||
|
mask_shape.append(i[1])
|
||||||
|
if input_dtype == mstype.uint8 and input_dtype == mstype.int8:
|
||||||
|
mask_shape.append(4)
|
||||||
|
else:
|
||||||
|
mask_shape.append(2)
|
||||||
|
|
||||||
|
output_shape = (input_x['shape'], mask_shape)
|
||||||
|
validator.check_subclass("input_x", input_dtype, mstype.tensor, self.name)
|
||||||
|
validator.check_tensor_type_same({'input_x': input_dtype}, mstype.number_type, self.name)
|
||||||
|
mask_dtype = mstype.uint8
|
||||||
|
output_dtype = (input_dtype, mask_dtype)
|
||||||
|
|
||||||
|
return {'shape': output_shape,
|
||||||
|
'dtype': output_dtype,
|
||||||
|
'value': None}
|
||||||
|
|
||||||
|
|
||||||
class Elu(PrimitiveWithInfer):
|
class Elu(PrimitiveWithInfer):
|
||||||
r"""
|
r"""
|
||||||
Computes exponential linear: `alpha * (exp(x) - 1)` if x < 0, `x` otherwise.
|
Computes exponential linear: `alpha * (exp(x) - 1)` if x < 0, `x` otherwise.
|
||||||
|
@ -2580,3 +2637,51 @@ class ExtractImagePatches(PrimitiveWithInfer):
|
||||||
def infer_dtype(self, input_x):
|
def infer_dtype(self, input_x):
|
||||||
validator.check_tensor_type_same({"input_x": input_x}, (mstype.int8, mstype.float16, mstype.float32), self.name)
|
validator.check_tensor_type_same({"input_x": input_x}, (mstype.int8, mstype.float16, mstype.float32), self.name)
|
||||||
return input_x
|
return input_x
|
||||||
|
|
||||||
|
|
||||||
|
class ConfusionMulGrad(PrimitiveWithInfer):
|
||||||
|
"""
|
||||||
|
`output0` is the result of which input0 dot multily input1.
|
||||||
|
|
||||||
|
`output1` is the result of which input0 dot multily input1, then reducesum it.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
axis (Union[int, tuple[int], list[int]]): The dimensions to reduce.
|
||||||
|
Default:(), reduce all dimensions. Only constant value is allowed.
|
||||||
|
keep_dims (bool):
|
||||||
|
- If true, keep these reduced dimensions and the length is 1.
|
||||||
|
- If false, don't keep these dimensions. Default:False.
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **input_0** (Tensor) - The input Tensor.
|
||||||
|
- **input_1** (Tensor) - The input Tensor.
|
||||||
|
- **input_2** (Tensor) - The input Tensor.
|
||||||
|
|
||||||
|
outputs:
|
||||||
|
- **output_0** (Tensor) - The same shape with `input0`.
|
||||||
|
- **output_1** (Tensor)
|
||||||
|
|
||||||
|
- If axis is (), and keep_dims is false, the output is a 0-D array representing
|
||||||
|
the sum of all elements in the input array.
|
||||||
|
- If axis is int, set as 2, and keep_dims is false,
|
||||||
|
the shape of output is :math:`(x_1,x_3,...,x_R)`.
|
||||||
|
- If axis is tuple(int), set as (2,3), and keep_dims is false,
|
||||||
|
the shape of output is :math:`(x_1,x_4,...x_R)`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self, axis = (), keep_dims = False):
|
||||||
|
self.init_prim_io_names(inputs = ["input0", "input1", "input2"], outputs = ["output0", "output1"])
|
||||||
|
self.axis_ = validator.check_value_type("axis", axis, [int, tuple, list], self.name)
|
||||||
|
self.keep_dims_ = validator.check_value_type("keep_dims", keep_dims, [bool], self.name)
|
||||||
|
|
||||||
|
def infer_shape(self, input0_shape, input1_shape, input2_shape):
|
||||||
|
outshape0 = input0_shape
|
||||||
|
outshape1 = _infer_shape_reduce(input1_shape, self.axis_, self.keep_dims_, self.name)
|
||||||
|
return outshape0, outshape1
|
||||||
|
|
||||||
|
def infer_dtype(self, input0_dtype, input1_dtype, input2_dtype):
|
||||||
|
validator.check_subclass("input0_dtype", input0_dtype, mstype.tensor, self.name)
|
||||||
|
validator.check_subclass("input1_dtype", input1_dtype, mstype.tensor, self.name)
|
||||||
|
validator.check_subclass("input2_dtype", input2_dtype, mstype.tensor, self.name)
|
||||||
|
return input0_dtype, input1_dtype
|
||||||
|
|
|
@ -0,0 +1,53 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore.common.api import ms_function
|
||||||
|
import numpy as np
|
||||||
|
import mindspore.context as context
|
||||||
|
from mindspore.common.initializer import initializer
|
||||||
|
from mindspore.common.parameter import Parameter
|
||||||
|
from mindspore.ops.composite import GradOperation
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
|
||||||
|
class Grad(nn.Cell):
|
||||||
|
def __init__(self, network):
|
||||||
|
super(Grad, self).__init__()
|
||||||
|
self.grad = GradOperation(name="get_all", get_all=True)
|
||||||
|
self.network = network
|
||||||
|
|
||||||
|
@ms_function
|
||||||
|
def construct(self, input):
|
||||||
|
return self.grad(self.network)(input)
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.relu_v2 = P.ReLUV2()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
return self.relu_v2(x)
|
||||||
|
|
||||||
|
def test_net():
|
||||||
|
x = Tensor(np.ones((2,3,3,4)).astype(np.float32))
|
||||||
|
relu_net = Net()
|
||||||
|
relu_output = relu_net(x)
|
||||||
|
net = Grad(Net())
|
||||||
|
output_grad = net(x)
|
||||||
|
print(relu_output[0].asnumpy())
|
||||||
|
print(relu_output[1].asnumpy())
|
||||||
|
print(len(output_grad))
|
||||||
|
print(output_grad[0].asnumpy())
|
|
@ -582,6 +582,10 @@ test_case_nn_ops = [
|
||||||
'block': P.ReLU6(),
|
'block': P.ReLU6(),
|
||||||
'desc_inputs': [[1, 3, 4, 4]],
|
'desc_inputs': [[1, 3, 4, 4]],
|
||||||
'desc_bprop': [[1, 3, 4, 4]]}),
|
'desc_bprop': [[1, 3, 4, 4]]}),
|
||||||
|
('ReLUV2', {
|
||||||
|
'block': P.ReLUV2(),
|
||||||
|
'desc_inputs': [[1, 3, 4, 4]],
|
||||||
|
'desc_bprop': [[1, 3, 4, 4], [1, 3, 4, 4]]}),
|
||||||
('ReLUGrad', {
|
('ReLUGrad', {
|
||||||
'block': G.ReluGrad(),
|
'block': G.ReluGrad(),
|
||||||
'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
|
'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
|
||||||
|
@ -1134,6 +1138,21 @@ test_case_other_ops = [
|
||||||
'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
|
'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
|
||||||
Tensor(np.array([1.2]).astype(np.float32))],
|
Tensor(np.array([1.2]).astype(np.float32))],
|
||||||
'skip': ['backward']}),
|
'skip': ['backward']}),
|
||||||
|
('ConfusionMulGrad_1', {
|
||||||
|
'block': P.ConfusionMulGrad(axis = [0], keep_dims = False),
|
||||||
|
'desc_inputs': [[3, 2], [3, 2], [3, 2]],
|
||||||
|
'desc_bprop': [[3, 2], [2]],
|
||||||
|
'skip': ['backward']}),
|
||||||
|
('ConfusionMulGrad_2', {
|
||||||
|
'block': P.ConfusionMulGrad(axis = [0], keep_dims = True),
|
||||||
|
'desc_inputs': [[3, 2], [3, 2], [3, 2]],
|
||||||
|
'desc_bprop': [[3, 2], [1, 2]],
|
||||||
|
'skip': ['backward']}),
|
||||||
|
('ConfusionMulGrad_3', {
|
||||||
|
'block': P.ConfusionMulGrad(axis = (), keep_dims = True),
|
||||||
|
'desc_inputs': [[2, 3, 4], [2, 3, 4], [2, 3, 4]],
|
||||||
|
'desc_bprop': [[2, 3, 4], [1, 1, 1]],
|
||||||
|
'skip': ['backward']}),
|
||||||
('HistogramSummary', {
|
('HistogramSummary', {
|
||||||
'block': HistogramSummaryNet(),
|
'block': HistogramSummaryNet(),
|
||||||
'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
|
'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
|
||||||
|
|
Loading…
Reference in New Issue