!957 complete vm ops for BatchToSpace and SpaceToBatch

Merge pull request !957 from jiangjinsheng/space_to_batch
This commit is contained in:
mindspore-ci-bot 2020-05-07 19:11:32 +08:00 committed by Gitee
commit becaf39262
5 changed files with 109 additions and 0 deletions

View File

@ -75,6 +75,8 @@ static std::map<string, string> tbe_func_adapter_map = {
{"resize_nearest_neighbor", "resize_nearest_neighbor_v2_d"},
{"resize_nearest_neighbor_grad", "resize_nearest_neighbor_v2_grad_d"},
{"pad", "pad_d"},
{"space_to_batch", "space_to_batch_d"},
{"batch_to_space", "batch_to_space_d"},
{"adam", "apply_adam_d"}};
void TbeAdapter::NormalizeFuncName(std::string *func_name) {

View File

@ -156,3 +156,5 @@ from .scatter_nd_update import _scatter_nd_update_tbe
from .avg_pool import _avg_pool_tbe
from .avg_pool_grad import _avg_pool_grad_tbe
from .ones_like import _ones_like_tbe
from .batch_to_space import _batch_to_space_tbe
from .space_to_batch import _space_to_batch_tbe

View File

@ -0,0 +1,38 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""BatchToSpace op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
batch_to_space_op_info = TBERegOp("BatchToSpace") \
.fusion_type("OPAQUE") \
.async_flag(False) \
.binfile_name("batch_to_space_d.so") \
.compute_cost(10) \
.kernel_name("batch_to_space_d") \
.partial_flag(True) \
.attr("block_size", "required", "int", "all") \
.attr("crops", "required", "listListInt", "all") \
.input(0, "x", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
.get_op_info()
@op_info_register(batch_to_space_op_info)
def _batch_to_space_tbe():
"""BatchToSpace TBE register"""
return

View File

@ -0,0 +1,38 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""SpaceToBatch op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
space_to_batch_op_info = TBERegOp("SpaceToBatch") \
.fusion_type("OPAQUE") \
.async_flag(False) \
.binfile_name("space_to_batch_d.so") \
.compute_cost(10) \
.kernel_name("space_to_batch_d") \
.partial_flag(True) \
.attr("block_size", "required", "int", "all") \
.attr("paddings", "required", "listListInt", "all") \
.input(0, "x", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
.get_op_info()
@op_info_register(space_to_batch_op_info)
def _space_to_batch_tbe():
"""SpaceToBatch TBE register"""
return

View File

@ -95,6 +95,7 @@ def test_select():
expect = np.array([[1, 8, 9], [10, 5, 6]])
assert np.all(output.asnumpy() == expect)
def test_argmin_invalid_output_type():
P.Argmin(-1, mstype.int64)
P.Argmin(-1, mstype.int32)
@ -203,6 +204,28 @@ class MathBinaryNet2(Cell):
return self.logic_or(ret_less_equal, ret_greater)
class BatchToSpaceNet(Cell):
def __init__(self):
super(BatchToSpaceNet, self).__init__()
block_size = 2
crops = [[0, 0], [0, 0]]
self.batch_to_space = P.BatchToSpace(block_size, crops)
def construct(self, x):
return self.batch_to_space(x)
class SpaceToBatchNet(Cell):
def __init__(self):
super(SpaceToBatchNet, self).__init__()
block_size = 2
paddings = [[0, 0], [0, 0]]
self.space_to_batch = P.SpaceToBatch(block_size, paddings)
def construct(self, x):
return self.space_to_batch(x)
test_case_array_ops = [
('CustNet1', {
'block': CustNet1(),
@ -219,6 +242,12 @@ test_case_array_ops = [
('MathBinaryNet2', {
'block': MathBinaryNet2(),
'desc_inputs': [Tensor(np.ones([2, 2]), dtype=ms.int32)]}),
('BatchToSpaceNet', {
'block': BatchToSpaceNet(),
'desc_inputs': [Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]).astype(np.float16))]}),
('SpaceToBatchNet', {
'block': SpaceToBatchNet(),
'desc_inputs': [Tensor(np.array([[[[1, 2], [3, 4]]]]).astype(np.float16))]}),
]
test_case_lists = [test_case_array_ops]