forked from mindspore-Ecosystem/mindspore
support vm for space_to_depth
This commit is contained in:
parent
f73867222e
commit
ba99cb7bcb
|
@ -164,6 +164,8 @@ from .avg_pool_grad import _avg_pool_grad_tbe
|
|||
from .ones_like import _ones_like_tbe
|
||||
from .batch_to_space import _batch_to_space_tbe
|
||||
from .space_to_batch import _space_to_batch_tbe
|
||||
from .depth_to_space import _depth_to_space_tbe
|
||||
from .space_to_depth import _space_to_depth_tbe
|
||||
from .floor import _floor_tbe
|
||||
from .log1p import _log1p_tbe
|
||||
from .resize_bilinear import _resize_bilinear_tbe
|
||||
|
|
|
@ -0,0 +1,46 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""DepthToSpace op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
depth_to_space_op_info = TBERegOp("DepthToSpace") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("depth_to_space.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("depth_to_space") \
|
||||
.partial_flag(True) \
|
||||
.attr("block_size", "required", "int", "all") \
|
||||
.attr("data_format", "optional", "str", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_NHWC, DataType.F16_NHWC) \
|
||||
.dtype_format(DataType.F32_NHWC, DataType.F32_NHWC) \
|
||||
.dtype_format(DataType.I8_NHWC, DataType.I8_NHWC) \
|
||||
.dtype_format(DataType.I16_NHWC, DataType.I16_NHWC) \
|
||||
.dtype_format(DataType.I32_NHWC, DataType.I32_NHWC) \
|
||||
.dtype_format(DataType.I64_NHWC, DataType.I64_NHWC) \
|
||||
.dtype_format(DataType.U8_NHWC, DataType.U8_NHWC) \
|
||||
.dtype_format(DataType.U16_NHWC, DataType.U16_NHWC) \
|
||||
.dtype_format(DataType.U32_NHWC, DataType.U32_NHWC) \
|
||||
.dtype_format(DataType.U64_NHWC, DataType.U64_NHWC) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(depth_to_space_op_info)
|
||||
def _depth_to_space_tbe():
|
||||
"""DepthToSpace TBE register"""
|
||||
return
|
|
@ -0,0 +1,46 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""SpaceToDepth op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
space_to_depth_op_info = TBERegOp("SpaceToDepth") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("space_to_depth.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("space_to_depth") \
|
||||
.partial_flag(True) \
|
||||
.attr("block_size", "required", "int", "all") \
|
||||
.attr("data_format", "optional", "str", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_NHWC, DataType.F16_NHWC) \
|
||||
.dtype_format(DataType.F32_NHWC, DataType.F32_NHWC) \
|
||||
.dtype_format(DataType.I8_NHWC, DataType.I8_NHWC) \
|
||||
.dtype_format(DataType.I16_NHWC, DataType.I16_NHWC) \
|
||||
.dtype_format(DataType.I32_NHWC, DataType.I32_NHWC) \
|
||||
.dtype_format(DataType.I64_NHWC, DataType.I64_NHWC) \
|
||||
.dtype_format(DataType.U8_NHWC, DataType.U8_NHWC) \
|
||||
.dtype_format(DataType.U16_NHWC, DataType.U16_NHWC) \
|
||||
.dtype_format(DataType.U32_NHWC, DataType.U32_NHWC) \
|
||||
.dtype_format(DataType.U64_NHWC, DataType.U64_NHWC) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(space_to_depth_op_info)
|
||||
def _space_to_depth_tbe():
|
||||
"""SpaceToDepth TBE register"""
|
||||
return
|
|
@ -2127,7 +2127,6 @@ class SpaceToDepth(PrimitiveWithInfer):
|
|||
validator.check_value_type('block_size', block_size, [int], self.name)
|
||||
validator.check('block_size', block_size, '', 2, Rel.GE)
|
||||
self.block_size = block_size
|
||||
self.add_prim_attr("data_format", "NCHW")
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
validator.check('x dimension', len(x_shape), '', 4, Rel.EQ)
|
||||
|
@ -2185,7 +2184,6 @@ class DepthToSpace(PrimitiveWithInfer):
|
|||
validator.check_value_type('block_size', block_size, [int], self.name)
|
||||
validator.check('block_size', block_size, '', 2, Rel.GE, self.name)
|
||||
self.block_size = block_size
|
||||
self.add_prim_attr("data_format", "NCHW")
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
validator.check('x dimension', len(x_shape), '', 4, Rel.EQ)
|
||||
|
|
|
@ -243,6 +243,25 @@ class UnpackNet(Cell):
|
|||
|
||||
def construct(self, x):
|
||||
return self.unpack(x)
|
||||
class SpaceToDepthNet(Cell):
|
||||
def __init__(self):
|
||||
super(SpaceToDepthNet, self).__init__()
|
||||
block_size = 2
|
||||
self.space_to_depth = P.SpaceToDepth(block_size)
|
||||
|
||||
def construct(self, x):
|
||||
return self.space_to_depth(x)
|
||||
|
||||
|
||||
class DepthToSpaceNet(Cell):
|
||||
def __init__(self):
|
||||
super(DepthToSpaceNet, self).__init__()
|
||||
block_size = 2
|
||||
self.depth_to_space = P.DepthToSpace(block_size)
|
||||
|
||||
def construct(self, x):
|
||||
return self.depth_to_space(x)
|
||||
|
||||
|
||||
test_case_array_ops = [
|
||||
('CustNet1', {
|
||||
|
@ -272,6 +291,12 @@ test_case_array_ops = [
|
|||
('UnpackNet', {
|
||||
'block': UnpackNet(),
|
||||
'desc_inputs': [Tensor(np.array([[1, 2], [3, 4]]).astype(np.float16))]}),
|
||||
('SpaceToDepthNet', {
|
||||
'block': SpaceToDepthNet(),
|
||||
'desc_inputs': [Tensor(np.random.rand(1,3,2,2).astype(np.float16))]}),
|
||||
('DepthToSpaceNet', {
|
||||
'block': DepthToSpaceNet(),
|
||||
'desc_inputs': [Tensor(np.random.rand(1,12,1,1).astype(np.float16))]}),
|
||||
]
|
||||
|
||||
test_case_lists = [test_case_array_ops]
|
||||
|
|
Loading…
Reference in New Issue