Cleanup dataset UT: unskip and enhance TFRecord sharding tests

This commit is contained in:
Cathy Wong 2020-05-19 17:09:54 -04:00
parent a3b9c238cc
commit b78894e02b
4 changed files with 99 additions and 10 deletions

View File

@ -21,19 +21,18 @@ import mindspore.dataset.transforms.vision.py_transforms as F
from mindspore import log as logger
# In generator dataset: Number of rows is 3, its value is 0, 1, 2
# In generator dataset: Number of rows is 3; its values are 0, 1, 2
def generator():
for i in range(3):
yield np.array([i]),
# In generator_10 dataset: Number of rows is 7, its value is 3, 4, 5 ... 10
# In generator_10 dataset: Number of rows is 7; its values are 3, 4, 5 ... 9
def generator_10():
for i in range(3, 10):
yield np.array([i]),
# In generator_20 dataset: Number of rows is 10, its value is 10, 11, 12 ... 20
# In generator_20 dataset: Number of rows is 10; its values are 10, 11, 12 ... 19
def generator_20():
for i in range(10, 20):
yield np.array([i]),
@ -135,7 +134,7 @@ def test_concat_05():
def test_concat_06():
"""
Test concat: test concat muti datasets in one time
Test concat: test concat multi datasets in one time
"""
logger.info("test_concat_06")
data1 = ds.GeneratorDataset(generator, ["col1"])

View File

@ -35,6 +35,9 @@ def test_imagefolder_shardings(print_res=False):
assert (sharding_config(4, 0, 5, False, dict()) == [0, 0, 0, 1, 1]) # 5 rows
assert (sharding_config(4, 0, 12, False, dict()) == [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3]) # 11 rows
assert (sharding_config(4, 3, None, False, dict()) == [0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]) # 11 rows
assert (sharding_config(1, 0, 55, False, dict()) == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] ) # 44 rows
assert (sharding_config(2, 0, 55, False, dict()) == [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3] ) # 22 rows
assert (sharding_config(2, 1, 55, False, dict()) == [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3] ) # 22 rows
# total 22 in dataset rows because of class indexing which takes only 2 folders
assert (len(sharding_config(4, 0, None, True, {"class1": 111, "class2": 999})) == 6)
assert (len(sharding_config(4, 2, 3, True, {"class1": 111, "class2": 999})) == 3)
@ -44,6 +47,86 @@ def test_imagefolder_shardings(print_res=False):
assert (len(sharding_config(5, 1, None, True, {"class1": 111, "class2": 999}, 4)) == 20)
def test_tfrecord_shardings1(print_res=False):
""" Test TFRecordDataset sharding with num_parallel_workers=1 """
# total 40 rows in dataset
tf_files = ["../data/dataset/tf_file_dataset/test1.data", "../data/dataset/tf_file_dataset/test2.data",
"../data/dataset/tf_file_dataset/test3.data", "../data/dataset/tf_file_dataset/test4.data"]
def sharding_config(num_shards, shard_id, num_samples, repeat_cnt=1):
data1 = ds.TFRecordDataset(tf_files, num_shards=num_shards, shard_id=shard_id, num_samples=num_samples,
shuffle=ds.Shuffle.FILES, num_parallel_workers=1)
data1 = data1.repeat(repeat_cnt)
res = []
for item in data1.create_dict_iterator(): # each data is a dictionary
res.append(item["scalars"][0])
if print_res:
logger.info("scalars of dataset: {}".format(res))
return res
assert sharding_config(2, 0, None, 1) == [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] # 20 rows
assert sharding_config(2, 1, None, 1) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] # 20 rows
assert sharding_config(2, 0, 3, 1) == [11, 12, 13] # 3 rows
assert sharding_config(2, 1, 3, 1) == [1, 2, 3] # 3 rows
assert sharding_config(2, 0, 40, 1) == [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] # 20 rows
assert sharding_config(2, 1, 40, 1) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] # 20 rows
assert sharding_config(2, 0, 55, 1) == [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] # 20 rows
assert sharding_config(2, 1, 55, 1) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] # 20 rows
assert sharding_config(3, 0, 8, 1) == [11, 12, 13, 14, 15, 16, 17, 18] # 8 rows
assert sharding_config(3, 1, 8, 1) == [1, 2, 3, 4, 5, 6, 7, 8] # 8 rows
assert sharding_config(3, 2, 8, 1) == [21, 22, 23, 24, 25, 26, 27, 28] # 8 rows
assert sharding_config(4, 0, 2, 1) == [11, 12] # 2 rows
assert sharding_config(4, 1, 2, 1) == [1, 2] # 2 rows
assert sharding_config(4, 2, 2, 1) == [21, 22] # 2 rows
assert sharding_config(4, 3, 2, 1) == [31, 32] # 2 rows
assert sharding_config(3, 0, 4, 2) == [11, 12, 13, 14, 21, 22, 23, 24] # 8 rows
assert sharding_config(3, 1, 4, 2) == [1, 2, 3, 4, 11, 12, 13, 14] # 8 rows
assert sharding_config(3, 2, 4, 2) == [21, 22, 23, 24, 31, 32, 33, 34] # 8 rows
def test_tfrecord_shardings4(print_res=False):
""" Test TFRecordDataset sharding with num_parallel_workers=4 """
# total 40 rows in dataset
tf_files = ["../data/dataset/tf_file_dataset/test1.data", "../data/dataset/tf_file_dataset/test2.data",
"../data/dataset/tf_file_dataset/test3.data", "../data/dataset/tf_file_dataset/test4.data"]
def sharding_config(num_shards, shard_id, num_samples, repeat_cnt=1):
data1 = ds.TFRecordDataset(tf_files, num_shards=num_shards, shard_id=shard_id, num_samples=num_samples,
shuffle=ds.Shuffle.FILES, num_parallel_workers=4)
data1 = data1.repeat(repeat_cnt)
res = []
for item in data1.create_dict_iterator(): # each data is a dictionary
res.append(item["scalars"][0])
if print_res:
logger.info("scalars of dataset: {}".format(res))
return res
def check_result(result_list, expect_length, expect_set):
assert len(result_list) == expect_length
assert set(result_list) == expect_set
check_result(sharding_config(2, 0, None, 1), 20, {11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30})
check_result(sharding_config(2, 1, None, 1), 20, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40})
check_result(sharding_config(2, 0, 3, 1), 3, {11, 12, 21})
check_result(sharding_config(2, 1, 3, 1), 3, {1, 2, 31})
check_result(sharding_config(2, 0, 40, 1), 20, {11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30})
check_result(sharding_config(2, 1, 40, 1), 20, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40})
check_result(sharding_config(2, 0, 55, 1), 20, {11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30})
check_result(sharding_config(2, 1, 55, 1), 20, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40})
check_result(sharding_config(3, 0, 8, 1), 8, {32, 33, 34, 11, 12, 13, 14, 31})
check_result(sharding_config(3, 1, 8, 1), 8, {1, 2, 3, 4, 5, 6, 7, 8})
check_result(sharding_config(3, 2, 8, 1), 8, {21, 22, 23, 24, 25, 26, 27, 28})
check_result(sharding_config(4, 0, 2, 1), 2, {11, 12})
check_result(sharding_config(4, 1, 2, 1), 2, {1, 2})
check_result(sharding_config(4, 2, 2, 1), 2, {21, 22})
check_result(sharding_config(4, 3, 2, 1), 2, {31, 32})
check_result(sharding_config(3, 0, 4, 2), 8, {32, 1, 2, 11, 12, 21, 22, 31})
check_result(sharding_config(3, 1, 4, 2), 8, {1, 2, 3, 4, 11, 12, 13, 14})
check_result(sharding_config(3, 2, 4, 2), 8, {32, 33, 34, 21, 22, 23, 24, 31})
def test_manifest_shardings(print_res=False):
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
@ -157,6 +240,8 @@ def test_mnist_shardings(print_res=False):
if __name__ == '__main__':
test_imagefolder_shardings(True)
test_tfrecord_shardings1(True)
test_tfrecord_shardings4(True)
test_manifest_shardings(True)
test_voc_shardings(True)
test_cifar10_shardings(True)

View File

@ -43,7 +43,7 @@ def visualize(image_1, image_2):
plt.show()
def skip_test_five_crop_op():
def test_five_crop_op():
"""
Test FiveCrop
"""

View File

@ -153,7 +153,7 @@ def test_tf_record_shuffle():
assert np.array_equal(t1, t2)
def skip_test_tf_record_shard():
def test_tf_record_shard():
tf_files = ["../data/dataset/tf_file_dataset/test1.data", "../data/dataset/tf_file_dataset/test2.data",
"../data/dataset/tf_file_dataset/test3.data", "../data/dataset/tf_file_dataset/test4.data"]
@ -171,12 +171,14 @@ def skip_test_tf_record_shard():
# 2. with enough epochs, both workers will get the entire dataset (e,g. ep1_wrkr1: f1&f3, ep2,_wrkr1 f2&f4)
worker1_res = get_res(0, 16)
worker2_res = get_res(1, 16)
# Confirm each worker gets 3x16=48 rows
assert len(worker1_res) == 48
assert len(worker1_res) == len(worker2_res)
# check criteria 1
for i in range(len(worker1_res)):
assert (worker1_res[i] != worker2_res[i])
# check criteria 2
assert (set(worker2_res) == set(worker1_res))
assert (len(set(worker2_res)) == 12)
def test_tf_shard_equal_rows():
@ -198,7 +200,10 @@ def test_tf_shard_equal_rows():
for i in range(len(worker1_res)):
assert (worker1_res[i] != worker2_res[i])
assert (worker2_res[i] != worker3_res[i])
assert (len(worker1_res) == 28)
# Confirm each worker gets same number of rows
assert len(worker1_res) == 28
assert len(worker1_res) == len(worker2_res)
assert len(worker2_res) == len(worker3_res)
worker4_res = get_res(1, 0, 1)
assert (len(worker4_res) == 40)
@ -272,7 +277,7 @@ if __name__ == '__main__':
test_tf_files()
test_tf_record_schema()
test_tf_record_shuffle()
# test_tf_record_shard()
test_tf_record_shard()
test_tf_shard_equal_rows()
test_case_tf_file_no_schema_columns_list()
test_tf_record_schema_columns_list()