forked from mindspore-Ecosystem/mindspore
fix_cast_bug
This commit is contained in:
parent
930a1fb0a8
commit
b4d34973bc
|
@ -346,6 +346,8 @@ bool IsAutoParallelCareNode(const CNodePtr &cnode) {
|
|||
}
|
||||
|
||||
OperatorInfoPtr CreateTheOperatorInfo(const PrimitivePtr &prim, const CNodePtr &cnode) {
|
||||
MS_EXCEPTION_IF_NULL(prim);
|
||||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
auto attrs = prim->attrs();
|
||||
std::vector<Shapes> shape_list = ExtractShape(cnode);
|
||||
if (shape_list.empty()) {
|
||||
|
@ -381,8 +383,8 @@ OperatorInfoPtr CreateTheOperatorInfo(const PrimitivePtr &prim, const CNodePtr &
|
|||
operator_info->set_outputs_dtype(cnode->Type());
|
||||
operator_info->set_cnode(cnode);
|
||||
// If no strategy has been configured for this operator, then candidate strategies are generated for
|
||||
// auto-strategy searching
|
||||
if (!StrategyFound(attrs)) {
|
||||
// auto-strategy searching, if this primitive is Cast, we ignore the user-specified strategy
|
||||
if (!StrategyFound(attrs) || prim->name() == CAST) {
|
||||
// Compute split_flag_list_, indicating which input has batch dimension. This is ONLY used for preparation for
|
||||
// BatchParallelInfo operator
|
||||
operator_info->ComputeBatchSplitFlagList();
|
||||
|
|
|
@ -370,15 +370,12 @@ bool IsParallelCareNode(const CNodePtr& cnode) {
|
|||
if (prim == nullptr) {
|
||||
return false;
|
||||
}
|
||||
auto attrs = prim->attrs();
|
||||
if (IsInBlackList(prim)) {
|
||||
MS_LOG(INFO) << "Parallel don't care node: " << prim->name();
|
||||
return false;
|
||||
}
|
||||
if ((prim->name() == CAST)) {
|
||||
if ((!attrs.count(STRATEGY)) && (cnode->operator_info() == nullptr)) {
|
||||
return false;
|
||||
}
|
||||
if ((prim->name() == CAST) && (cnode->operator_info() == nullptr)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return cnode->in_forward_flag();
|
||||
|
@ -648,6 +645,13 @@ LossNodeInfo GetLossNodeInfo(const AnfNodePtr& loss_node) {
|
|||
MS_EXCEPTION_IF_NULL(pre_node);
|
||||
|
||||
LossNodeInfo node_info;
|
||||
// return -> cast
|
||||
auto pre_cnode = pre_node->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(pre_cnode);
|
||||
auto pre_prim = GetValueNode<PrimitivePtr>(pre_cnode->input(0));
|
||||
if (pre_prim->name() == CAST && pre_cnode->operator_info() == nullptr) {
|
||||
pre_node = pre_cnode->input(1);
|
||||
}
|
||||
|
||||
// return -> loss
|
||||
if (pre_node == loss_node) {
|
||||
|
@ -1943,6 +1947,13 @@ CNodePtr FindLossCNode(const FuncGraphPtr& func_graph) {
|
|||
MS_EXCEPTION_IF_NULL(current_value);
|
||||
PrimitivePtr current_prim = current_value->value()->cast<PrimitivePtr>();
|
||||
MS_EXCEPTION_IF_NULL(current_prim);
|
||||
// return -> cast
|
||||
if (current_prim->name() == CAST && pre_cnode->operator_info() == nullptr) {
|
||||
pre_cnode = pre_cnode->input(1)->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(pre_cnode);
|
||||
current_prim = GetValueNode<PrimitivePtr>(pre_cnode->input(0));
|
||||
}
|
||||
|
||||
// notice: the GetNext op has not input
|
||||
if (INVALID_LOSS_OPS.find(current_prim->name()) != INVALID_LOSS_OPS.end()) {
|
||||
MS_LOG(INFO) << "The loss is: " << current_prim->name();
|
||||
|
|
|
@ -272,3 +272,32 @@ def test_cast_before_mirror3():
|
|||
y = Tensor(np.ones([32, 64]), dtype=ms.float16)
|
||||
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
def test_mul_two_cast():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, strategy1, strategy2, strategy3):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().set_strategy(strategy1)
|
||||
self.mul2 = P.Mul().set_strategy(strategy2)
|
||||
self.cast = P.Cast().set_strategy(strategy3)
|
||||
self.cast2 = P.Cast().set_strategy(strategy3)
|
||||
|
||||
def construct(self, x, y, b):
|
||||
out = self.mul(x, y)
|
||||
out = self.mul2(out, b)
|
||||
out = self.cast(out, ms.int32)
|
||||
out = self.cast2(out, ms.bool_)
|
||||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((8, 1), (8, 1))
|
||||
strategy3 = ((8, 1), )
|
||||
net = GradWrap(Net(strategy1, strategy2, strategy3))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
_executor.compile(net, x, y, b)
|
||||
|
|
Loading…
Reference in New Issue