forked from mindspore-Ecosystem/mindspore
develop op ScatterMax and dock ge process
This commit is contained in:
parent
a5572f1517
commit
ac86996746
|
@ -102,6 +102,7 @@ const char kNameReLU6Grad[] = "ReLU6Grad";
|
|||
const char kNameElu[] = "Elu";
|
||||
const char kNameEluGrad[] = "EluGrad";
|
||||
const char kNameScatterNdUpdate[] = "ScatterNdUpdate";
|
||||
const char kNameScatterMax[] = "ScatterMax";
|
||||
const char kNameNMSWithMask[] = "NMSWithMask";
|
||||
const char kNameCheckValid[] = "CheckValid";
|
||||
const char kNameSmoothL1Loss[] = "SmoothL1Loss";
|
||||
|
@ -253,6 +254,7 @@ std::unordered_map<std::string, OpAdapterDescPtr> &DfGraphConvertor::get_adpt_ma
|
|||
{string(kNameZerosLike), ADPT_DESC(ZerosLike)},
|
||||
{string(kNameOnesLike), ADPT_DESC(OnesLike)},
|
||||
{string(kNameScatterNdUpdate), ADPT_DESC(ScatterNdUpdate)},
|
||||
{string(kNameScatterMax), ADPT_DESC(ScatterMax)},
|
||||
{string(kNameNMSWithMask), ADPT_DESC(NMSWithMask)},
|
||||
{string(kNameCheckValid), ADPT_DESC(CheckValid)},
|
||||
{string(kNameSmoothL1Loss), ADPT_DESC(SmoothL1Loss)},
|
||||
|
|
|
@ -530,6 +530,11 @@ INPUT_MAP(ScatterNdUpdate) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(indices)}, {3
|
|||
ATTR_MAP(ScatterNdUpdate) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
|
||||
OUTPUT_MAP(ScatterNdUpdate) = {{0, OUTPUT_DESC(var)}};
|
||||
|
||||
// ScatterMax
|
||||
INPUT_MAP(ScatterMax) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(indices)}, {3, INPUT_DESC(updates)}};
|
||||
ATTR_MAP(ScatterMax) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
|
||||
OUTPUT_MAP(ScatterMax) = {{0, OUTPUT_DESC(var)}};
|
||||
|
||||
// CheckValid
|
||||
INPUT_MAP(CheckValid) = {{1, INPUT_DESC(bbox_tensor)}, {2, INPUT_DESC(img_metas)}};
|
||||
ATTR_MAP(CheckValid) = EMPTY_ATTR_MAP;
|
||||
|
|
|
@ -136,6 +136,8 @@ DECLARE_OP_ADAPTER(OnesLike)
|
|||
DECLARE_OP_USE_OUTPUT(OnesLike)
|
||||
DECLARE_OP_ADAPTER(ScatterNdUpdate)
|
||||
DECLARE_OP_USE_OUTPUT(ScatterNdUpdate)
|
||||
DECLARE_OP_ADAPTER(ScatterMax)
|
||||
DECLARE_OP_USE_OUTPUT(ScatterMax)
|
||||
DECLARE_OP_ADAPTER(NMSWithMask)
|
||||
DECLARE_OP_USE_OUTPUT(NMSWithMask)
|
||||
DECLARE_OP_ADAPTER(Unpack)
|
||||
|
|
|
@ -24,7 +24,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
|
|||
Fill, GatherNd, GatherV2, InvertPermutation,
|
||||
IsInstance, IsSubClass, ArgMaxWithValue, OnesLike, ZerosLike,
|
||||
Rank, Reshape, ResizeNearestNeighbor, ArgMinWithValue,
|
||||
SameTypeShape,
|
||||
SameTypeShape, ScatterMax,
|
||||
ScalarToArray, ScalarToTensor, ScatterNd, ScatterNdUpdate, Select,
|
||||
Shape, Size, Slice, Split,
|
||||
Squeeze, StridedSlice, Tile,
|
||||
|
@ -184,6 +184,7 @@ __all__ = [
|
|||
'BoundingBoxDecode',
|
||||
'L2Normalize',
|
||||
'ScatterNd',
|
||||
'ScatterMax',
|
||||
'ResizeNearestNeighbor',
|
||||
'Pad',
|
||||
'MirrorPad',
|
||||
|
|
|
@ -1953,7 +1953,7 @@ class ScatterNdUpdate(PrimitiveWithInfer):
|
|||
Using given values to update tensor value, along with the input indices.
|
||||
|
||||
Args:
|
||||
use_locking (bool): Whether protect the assignment by a lock. Defaule: True.
|
||||
use_locking (bool): Whether protect the assignment by a lock. Default: True.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The target tensor.
|
||||
|
@ -1995,6 +1995,53 @@ class ScatterNdUpdate(PrimitiveWithInfer):
|
|||
return x_dtype
|
||||
|
||||
|
||||
class ScatterMax(PrimitiveWithInfer):
|
||||
"""
|
||||
Update the value of the input tensor through the max operation.
|
||||
|
||||
Using given values to update tensor value through the max operation, along with the input indices,.
|
||||
|
||||
Args:
|
||||
use_locking (bool): Whether protect the assignment by a lock. Default: True.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The target tensor.
|
||||
- **indices** (Tensor) - The index to do max operation whose data type should be int.
|
||||
- **updates** (Tensor) - The tensor doing the maximum operation with 'input_x',
|
||||
the data type is same as 'input_x', the shape is 'indices_shape + x_shape[1:]'.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape and data type as `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32)
|
||||
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
|
||||
>>> update = Tensor(np.ones([2, 2, 3]) * 88, mindspore.float32)
|
||||
>>> scatter_max = P.ScatterMax()
|
||||
>>> output = scatter_max(input_x, indices, update)
|
||||
[[88.0, 88.0, 88.0], [88.0, 88.0, 88.0]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, use_locking=True):
|
||||
"""Init ScatterMax"""
|
||||
self.init_prim_io_names(inputs=['x', 'indices', 'updates'], outputs=['y'])
|
||||
validator.check_value_type('use_locking', use_locking, (bool,), self.name)
|
||||
|
||||
def infer_shape(self, x_shape, indices_shape, updates_shape):
|
||||
if updates_shape and updates_shape != indices_shape + x_shape[1:]:
|
||||
raise ValueError(f"For '{self.name}', the shape of update should be [] or "
|
||||
f"update_shape = indices_shape + x_shape[1:], but got x_shape: {x_shape}, "
|
||||
f"indices_shape: {indices_shape}, update_shape: {updates_shape}.")
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x_dtype, indices_dtype, updates_dtype):
|
||||
validator.check_tensor_type_same({'indices': indices_dtype}, mstype.int_type, self.name)
|
||||
args = {"x": x_dtype, "updates": updates_dtype}
|
||||
validator.check_tensor_type_same(args, mstype.number_type, self.name)
|
||||
return x_dtype
|
||||
|
||||
|
||||
class SpaceToDepth(PrimitiveWithInfer):
|
||||
r"""
|
||||
Rearrange blocks of spatial data into depth.
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
""" test ops """
|
||||
import functools
|
||||
import numpy as np
|
||||
from mindspore import ops
|
||||
from mindspore import ops, Parameter, context
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
@ -26,10 +26,10 @@ from mindspore.common import dtype as mstype
|
|||
from ..ut_filter import non_graph_engine
|
||||
|
||||
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
||||
from ....mindspore_test_framework.pipeline.forward.compile_forward\
|
||||
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
||||
import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
|
||||
pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
|
||||
from ....mindspore_test_framework.pipeline.gradient.compile_gradient\
|
||||
from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
|
||||
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
|
||||
|
||||
|
||||
|
@ -150,7 +150,7 @@ class CumSumNet(nn.Cell):
|
|||
|
||||
|
||||
class SummaryNet(nn.Cell):
|
||||
def __init__(self,):
|
||||
def __init__(self):
|
||||
super(SummaryNet, self).__init__()
|
||||
self.s = P.ScalarSummary()
|
||||
self.add = P.TensorAdd()
|
||||
|
@ -161,7 +161,7 @@ class SummaryNet(nn.Cell):
|
|||
|
||||
|
||||
class HistogramSummaryNet(nn.Cell):
|
||||
def __init__(self,):
|
||||
def __init__(self):
|
||||
super(HistogramSummaryNet, self).__init__()
|
||||
self.summary = P.HistogramSummary()
|
||||
self.add = P.TensorAdd()
|
||||
|
@ -173,6 +173,19 @@ class HistogramSummaryNet(nn.Cell):
|
|||
return out
|
||||
|
||||
|
||||
class ScatterMax(nn.Cell):
|
||||
"""ScatterMax net definition"""
|
||||
|
||||
def __init__(self):
|
||||
super(ScatterMax, self).__init__()
|
||||
self.scatter_max = P.ScatterMax()
|
||||
self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref")
|
||||
|
||||
def construct(self, indices, updates):
|
||||
out = self.scatter_max(self.ref, indices, updates)
|
||||
return out
|
||||
|
||||
|
||||
test_case_math_ops = [
|
||||
('Neg', {
|
||||
'block': P.Neg(),
|
||||
|
@ -298,28 +311,28 @@ test_case_math_ops = [
|
|||
('StridedSlice', {
|
||||
'block': P.StridedSlice(),
|
||||
'desc_const': [(0, 1, 2, 1),
|
||||
(2, 3, 3, 4),
|
||||
(1, 1, 1, 1)],
|
||||
(2, 3, 3, 4),
|
||||
(1, 1, 1, 1)],
|
||||
'desc_inputs': [[2, 3, 3, 5]],
|
||||
'desc_bprop': [[2, 2, 1, 3]]}),
|
||||
('Slice_1', {
|
||||
'block': P.Slice(),
|
||||
'desc_const': [(0, 1, 2, 1),
|
||||
(1, 1, 1, 2)],
|
||||
(1, 1, 1, 2)],
|
||||
'desc_inputs': [[2, 3, 3, 5]],
|
||||
'desc_bprop': [[1, 1, 1, 2]]}),
|
||||
('StridedSliceGrad', {
|
||||
'block': G.StridedSliceGrad(),
|
||||
'desc_const': [(64, 1, 1024),
|
||||
(0, 1, 0),
|
||||
(64, 2, 1024),
|
||||
(1, 1, 1)],
|
||||
(0, 1, 0),
|
||||
(64, 2, 1024),
|
||||
(1, 1, 1)],
|
||||
'desc_inputs': [[64, 128, 1024]],
|
||||
'skip': ['backward']}),
|
||||
('RandomChoiceWithMask', {
|
||||
'block': P.RandomChoiceWithMask(256),
|
||||
'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
|
||||
'desc_bprop': [[256,4], [256,4]],
|
||||
'desc_bprop': [[256, 4], [256, 4]],
|
||||
'skip': ['backward']}),
|
||||
('LessEqual', {
|
||||
'block': P.LessEqual(),
|
||||
|
@ -419,7 +432,7 @@ test_case_math_ops = [
|
|||
'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
|
||||
('NotEqual_0', {
|
||||
'block': P.NotEqual(),
|
||||
'desc_inputs': [ 1, [2, 3, 4, 5]],
|
||||
'desc_inputs': [1, [2, 3, 4, 5]],
|
||||
'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
|
||||
'skip': ['backward']}),
|
||||
('Greater', {
|
||||
|
@ -435,13 +448,13 @@ test_case_math_ops = [
|
|||
'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
|
||||
'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
|
||||
('LogicalAnd', {
|
||||
'block': P.LogicalAnd(),
|
||||
'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
|
||||
'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
|
||||
'block': P.LogicalAnd(),
|
||||
'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
|
||||
'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
|
||||
('LogicalOr', {
|
||||
'block': P.LogicalOr(),
|
||||
'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
|
||||
'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
|
||||
'block': P.LogicalOr(),
|
||||
'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
|
||||
'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
|
||||
('NpuAllocFloatStatus', {
|
||||
'block': P.NPUAllocFloatStatus(),
|
||||
'desc_inputs': [],
|
||||
|
@ -476,8 +489,8 @@ test_case_math_ops = [
|
|||
('CumSum', {
|
||||
'block': P.CumSum(),
|
||||
'desc_const': [0],
|
||||
'desc_inputs': [Tensor(np.array([[3, 4],[1, 6]]).astype(np.float16))],
|
||||
'desc_bprop': [Tensor(np.array([[3, 4],[4, 10]]).astype(np.float16))]}),
|
||||
'desc_inputs': [Tensor(np.array([[3, 4], [1, 6]]).astype(np.float16))],
|
||||
'desc_bprop': [Tensor(np.array([[3, 4], [4, 10]]).astype(np.float16))]}),
|
||||
('ReduceSum_3', {
|
||||
'block': P.ReduceSum(),
|
||||
'desc_const': [0],
|
||||
|
@ -717,8 +730,8 @@ test_case_nn_ops = [
|
|||
('UnsortedSegmentSum', {
|
||||
'block': P.UnsortedSegmentSum(),
|
||||
'desc_const': [1280],
|
||||
'desc_inputs': [[1280,1024], Tensor(np.ones(1280).astype(np.int32))],
|
||||
'desc_bprop': [[8192,1024]],
|
||||
'desc_inputs': [[1280, 1024], Tensor(np.ones(1280).astype(np.int32))],
|
||||
'desc_bprop': [[8192, 1024]],
|
||||
'skip': ['backward']}),
|
||||
('UnsortedSegmentSum_1', {
|
||||
'block': P.UnsortedSegmentSum(),
|
||||
|
@ -821,19 +834,20 @@ test_case_nn_ops = [
|
|||
'skip': ['backward']}),
|
||||
('ArgmaxNet', {
|
||||
'block': ArgmaxNet(),
|
||||
'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
|
||||
'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
|
||||
'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
|
||||
'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
|
||||
'skip': ['backward']}),
|
||||
('ArgminNet', {
|
||||
'block': ArgminNet(),
|
||||
'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
|
||||
'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
|
||||
'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
|
||||
'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
|
||||
'skip': ['backward']}),
|
||||
('CumSumNet', {
|
||||
'block': CumSumNet(),
|
||||
'desc_const': [0],
|
||||
'desc_inputs': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))],
|
||||
'desc_bprop': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))]}),
|
||||
'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float16))],
|
||||
'desc_bprop': [
|
||||
Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float16))]}),
|
||||
('OneHot', {
|
||||
'block': P.OneHot(),
|
||||
'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
|
||||
|
@ -1021,31 +1035,31 @@ test_case_array_ops = [
|
|||
'desc_inputs': [(Tensor(np.array([1], np.float32)),
|
||||
Tensor(np.array([1], np.float32)),
|
||||
Tensor(np.array([1], np.float32)))],
|
||||
'desc_bprop': [[3,]]}),
|
||||
'desc_bprop': [[3, ]]}),
|
||||
('Pack_0', {
|
||||
'block': NetForPackInput(P.Pack()),
|
||||
'desc_inputs':[[2, 2], [2, 2], [2, 2]],
|
||||
'desc_bprop':[[3, 2, 2]],
|
||||
'desc_inputs': [[2, 2], [2, 2], [2, 2]],
|
||||
'desc_bprop': [[3, 2, 2]],
|
||||
}),
|
||||
('Pack_1', {
|
||||
'block': NetForPackInput(P.Pack(axis=-2)),
|
||||
'desc_inputs':[[3, 2, 3], [3, 2, 3], [3, 2, 3]],
|
||||
'desc_bprop':[[3, 2, 3, 3]],
|
||||
'desc_inputs': [[3, 2, 3], [3, 2, 3], [3, 2, 3]],
|
||||
'desc_bprop': [[3, 2, 3, 3]],
|
||||
}),
|
||||
('Pack_2', {
|
||||
'block': NetForPackInput(P.Pack()),
|
||||
'desc_inputs':[[128, 128], [128, 128]],
|
||||
'desc_bprop':[[2, 128, 128]],
|
||||
'desc_inputs': [[128, 128], [128, 128]],
|
||||
'desc_bprop': [[2, 128, 128]],
|
||||
}),
|
||||
('Unpack_0', {
|
||||
'block': NetForUnpackInput(P.Unpack(axis=0)),
|
||||
'desc_inputs':[[2, 4]],
|
||||
'desc_bprop':[[4], [4]],
|
||||
'desc_inputs': [[2, 4]],
|
||||
'desc_bprop': [[4], [4]],
|
||||
}),
|
||||
('Unpack_1', {
|
||||
'block': NetForUnpackInput(P.Unpack(axis=-1)),
|
||||
'desc_inputs':[Tensor(np.array([[1, 1, 1]], np.float32))],
|
||||
'desc_bprop':[[1], [1], [1]],
|
||||
'desc_inputs': [Tensor(np.array([[1, 1, 1]], np.float32))],
|
||||
'desc_bprop': [[1], [1], [1]],
|
||||
}),
|
||||
('Diag_1', {
|
||||
'block': P.Diag(),
|
||||
|
@ -1117,6 +1131,11 @@ test_case_other_ops = [
|
|||
'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
|
||||
Tensor(np.ones((2,), np.int32))),
|
||||
'desc_bprop': [([3, 3], {'dtype': np.int32})]}),
|
||||
('ScatterMax', {
|
||||
'block': ScatterMax(),
|
||||
'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
|
||||
Tensor(np.ones([2, 2, 3], np.float32) * 99)),
|
||||
'skip': ['backward']}),
|
||||
('SmoothL1Loss', {
|
||||
'block': P.SmoothL1Loss(),
|
||||
'desc_inputs': [[256, 4], [256, 4]],
|
||||
|
@ -1131,17 +1150,17 @@ test_case_other_ops = [
|
|||
Tensor(np.array([1.2]).astype(np.float32))],
|
||||
'skip': ['backward']}),
|
||||
('ConfusionMulGrad_1', {
|
||||
'block': P.ConfusionMulGrad(axis = [0], keep_dims = False),
|
||||
'block': P.ConfusionMulGrad(axis=[0], keep_dims=False),
|
||||
'desc_inputs': [[3, 2], [3, 2], [3, 2]],
|
||||
'desc_bprop': [[3, 2], [2]],
|
||||
'skip': ['backward']}),
|
||||
('ConfusionMulGrad_2', {
|
||||
'block': P.ConfusionMulGrad(axis = [0], keep_dims = True),
|
||||
'block': P.ConfusionMulGrad(axis=[0], keep_dims=True),
|
||||
'desc_inputs': [[3, 2], [3, 2], [3, 2]],
|
||||
'desc_bprop': [[3, 2], [1, 2]],
|
||||
'skip': ['backward']}),
|
||||
('ConfusionMulGrad_3', {
|
||||
'block': P.ConfusionMulGrad(axis = (), keep_dims = True),
|
||||
'block': P.ConfusionMulGrad(axis=(), keep_dims=True),
|
||||
'desc_inputs': [[2, 3, 4], [2, 3, 4], [2, 3, 4]],
|
||||
'desc_bprop': [[2, 3, 4], [1, 1, 1]],
|
||||
'skip': ['backward']}),
|
||||
|
@ -1150,7 +1169,7 @@ test_case_other_ops = [
|
|||
'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
|
||||
Tensor(np.array([1.2]).astype(np.float32))],
|
||||
'skip': ['backward']}),
|
||||
|
||||
|
||||
]
|
||||
|
||||
test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
|
||||
|
@ -1162,15 +1181,13 @@ test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
|
|||
test_exec_case = test_case
|
||||
|
||||
test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
|
||||
'backward' not in x[1]['skip'], test_case)
|
||||
'backward' not in x[1]['skip'], test_case)
|
||||
|
||||
|
||||
import mindspore.context as context
|
||||
|
||||
@non_graph_engine
|
||||
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
|
||||
def test_exec():
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
return test_exec_case
|
||||
|
||||
|
||||
|
@ -1207,12 +1224,12 @@ raise_set = [
|
|||
'desc_bprop': [[2, 3]]}),
|
||||
('Pack', {
|
||||
'block': (NetForPackInput(P.Pack()), {'exception': ValueError}),
|
||||
'desc_inputs':[[2, 2]],
|
||||
'desc_bprop':[[1, 2, 2]]}),
|
||||
'desc_inputs': [[2, 2]],
|
||||
'desc_bprop': [[1, 2, 2]]}),
|
||||
('PReLU', {
|
||||
'block': (P.PReLU(), {'exception': ValueError}),
|
||||
'desc_inputs':[[2], [1]],
|
||||
'desc_bprop':[[1]]}),
|
||||
'desc_inputs': [[2], [1]],
|
||||
'desc_bprop': [[1]]}),
|
||||
|
||||
]
|
||||
|
||||
|
|
Loading…
Reference in New Issue