!6299 mobilenetv2 debug for load ckpt

Merge pull request !6299 from yepei6/r0.7_mobilenet_debug
This commit is contained in:
mindspore-ci-bot 2020-09-18 11:28:16 +08:00 committed by Gitee
commit ab997f9e37
4 changed files with 26 additions and 19 deletions

View File

@ -46,6 +46,10 @@ if __name__ == '__main__':
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, config=config)
step_size = dataset.get_dataset_size()
if step_size == 0:
raise ValueError("The step_size of dataset is zero. Check if the images count of train dataset is more \
than batch_size in config.py")
net.set_train(False)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')

View File

@ -16,7 +16,6 @@
create train or eval dataset.
"""
import os
from tqdm import tqdm
import numpy as np
from mindspore import Tensor
@ -109,19 +108,20 @@ def extract_features(net, dataset_path, config):
config=config,
repeat_num=1)
step_size = dataset.get_dataset_size()
pbar = tqdm(list(dataset.create_dict_iterator()))
if step_size == 0:
raise ValueError("The step_size of dataset is zero. Check if the images count of train dataset is more \
than batch_size in config.py")
model = Model(net)
i = 0
for data in pbar:
for i, data in enumerate(dataset.create_dict_iterator()):
features_path = os.path.join(features_folder, f"feature_{i}.npy")
label_path = os.path.join(features_folder, f"label_{i}.npy")
if not (os.path.exists(features_path) and os.path.exists(label_path)):
if not os.path.exists(features_path) or not os.path.exists(label_path):
image = data["image"]
label = data["label"]
features = model.predict(Tensor(image))
np.save(features_path, features.asnumpy())
np.save(label_path, label)
pbar.set_description("Process dataset batch: %d" % (i + 1))
i += 1
print(f"Complete the batch {i}/{step_size}")
return step_size

View File

@ -330,8 +330,12 @@ class MobileNetV2(nn.Cell):
MobileNetV2 architecture.
Args:
backbone(nn.Cell):
head(nn.Cell):
class_num (int): number of classes.
width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
has_dropout (bool): Is dropout used. Default is false
inverted_residual_setting (list): Inverted residual settings. Default is None
round_nearest (list): Channel round to . Default is 8
Returns:
Tensor, output tensor.
@ -355,14 +359,11 @@ class MobileNetV2(nn.Cell):
class MobileNetV2Combine(nn.Cell):
"""
MobileNetV2 architecture.
MobileNetV2Combine architecture.
Args:
class_num (Cell): number of classes.
width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
has_dropout (bool): Is dropout used. Default is false
inverted_residual_setting (list): Inverted residual settings. Default is None
round_nearest (list): Channel round to . Default is 8
backbone(Cell): The features extract layers.
head(Cell): The fully connected layer.
Returns:
Tensor, output tensor.
@ -371,7 +372,7 @@ class MobileNetV2Combine(nn.Cell):
"""
def __init__(self, backbone, head):
super(MobileNetV2Combine, self).__init__()
super(MobileNetV2Combine, self).__init__(auto_prefix=False)
self.backbone = backbone
self.head = head

View File

@ -62,6 +62,9 @@ if __name__ == '__main__':
raise ValueError("Currently, CPU only support \"incremental_learn\", not \"fine_tune\" or \"train\".")
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, config=config)
step_size = dataset.get_dataset_size()
if step_size == 0:
raise ValueError("The step_size of dataset is zero. Check if the images count of train dataset is more \
than batch_size in config.py")
# Currently, only Ascend support switch precision.
switch_precision(net, mstype.float16, config)
@ -108,9 +111,8 @@ if __name__ == '__main__':
losses.append(network(feature, label).asnumpy())
epoch_mseconds = (time.time()-epoch_start) * 1000
per_step_mseconds = epoch_mseconds / step_size
print("\r epoch[{}], iter[{}] cost: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}"\
.format(epoch + 1, step_size, epoch_mseconds, per_step_mseconds, np.mean(np.array(losses))), \
end="")
print("epoch[{}], iter[{}] cost: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}"\
.format(epoch + 1, step_size, epoch_mseconds, per_step_mseconds, np.mean(np.array(losses))))
if (epoch + 1) % config.save_checkpoint_epochs == 0:
_exec_save_checkpoint(network, os.path.join(config.save_checkpoint_path, \
f"mobilenetv2_head_{epoch+1}.ckpt"))