forked from mindspore-Ecosystem/mindspore
Add batch norm bert fission pass
This commit is contained in:
parent
2b3192259d
commit
aa6f808616
|
@ -20,6 +20,7 @@
|
|||
#include "pre_activate/ascend/ir_fission/bn_split.h"
|
||||
#include "pre_activate/ascend/ir_fission/bn_grad_split.h"
|
||||
#include "pre_activate/ascend/ir_fission/batch_norm_grad_split.h"
|
||||
#include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h"
|
||||
#include "pre_activate/ascend/ir_fusion/fused_batch_norm_fusion.h"
|
||||
#include "pre_activate/ascend/ir_fission/layer_norm_grad_split.h"
|
||||
#include "pre_activate/pass/communication_op_fusion.h"
|
||||
|
@ -76,6 +77,7 @@ namespace opt {
|
|||
namespace {
|
||||
void AddAscendBackendOptionalIRFusion(PassManager *ir_fusion_pm) {
|
||||
MS_EXCEPTION_IF_NULL(ir_fusion_pm);
|
||||
ir_fusion_pm->AddPass(std::make_shared<BatchNormBertFission>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<SquareSumFusion>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<ClipByNormNoDivSquareSumFusion>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<LambUpdateWithLRRuleFusion>());
|
||||
|
|
|
@ -0,0 +1,170 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h"
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <algorithm>
|
||||
#include "session/anf_runtime_algorithm.h"
|
||||
#include "pre_activate/common/helper.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
namespace {
|
||||
const std::vector<int> kOutputIndex{0, 3, 4, 5};
|
||||
constexpr size_t kBatchNormRealOutputNum = 3;
|
||||
|
||||
bool CompareTupleGetitem(const AnfNodePtr &n1, const AnfNodePtr &n2) {
|
||||
MS_EXCEPTION_IF_NULL(n1);
|
||||
MS_EXCEPTION_IF_NULL(n2);
|
||||
auto n1_cnode = n1->cast<CNodePtr>();
|
||||
auto n2_cnode = n2->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(n1_cnode);
|
||||
MS_EXCEPTION_IF_NULL(n2_cnode);
|
||||
auto index_input1 = n1_cnode->input(kInputNodeOutputIndexInTupleGetItem);
|
||||
MS_EXCEPTION_IF_NULL(index_input1);
|
||||
auto value_node1 = index_input1->cast<ValueNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(value_node1);
|
||||
auto index_input2 = n2_cnode->input(kInputNodeOutputIndexInTupleGetItem);
|
||||
MS_EXCEPTION_IF_NULL(index_input2);
|
||||
auto value_node2 = index_input2->cast<ValueNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(value_node2);
|
||||
return GetValue<int>(value_node1->value()) < GetValue<int>(value_node2->value());
|
||||
}
|
||||
|
||||
bool GetBatchNormOutputs(const FuncGraphPtr &func_graph, const AnfNodePtr &bn, std::vector<AnfNodePtr> *bn_outputs) {
|
||||
MS_EXCEPTION_IF_NULL(func_graph);
|
||||
MS_EXCEPTION_IF_NULL(bn_outputs);
|
||||
auto manager = func_graph->manager();
|
||||
MS_EXCEPTION_IF_NULL(manager);
|
||||
if (manager->node_users().find(bn) == manager->node_users().end()) {
|
||||
return false;
|
||||
}
|
||||
size_t output_num = 0;
|
||||
for (const auto &node_index : manager->node_users()[bn]) {
|
||||
AnfNodePtr output = node_index.first;
|
||||
MS_EXCEPTION_IF_NULL(output);
|
||||
auto tuple_getiterm_cnode = output->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(tuple_getiterm_cnode);
|
||||
auto index_node = tuple_getiterm_cnode->input(kInputNodeOutputIndexInTupleGetItem);
|
||||
MS_EXCEPTION_IF_NULL(index_node);
|
||||
auto value_node = index_node->cast<ValueNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(value_node);
|
||||
int index = GetValue<int>(value_node->value());
|
||||
if (std::find(kOutputIndex.begin(), kOutputIndex.end(), index) == kOutputIndex.end()) {
|
||||
return false;
|
||||
}
|
||||
bn_outputs->push_back(output);
|
||||
output_num++;
|
||||
}
|
||||
return output_num == kBatchNormRealOutputNum;
|
||||
}
|
||||
|
||||
AnfNodePtr CreateBNTrainingReduce(const FuncGraphPtr &func_graph, const AnfNodePtr &bn) {
|
||||
MS_EXCEPTION_IF_NULL(func_graph);
|
||||
MS_EXCEPTION_IF_NULL(bn);
|
||||
auto bn_cnode = bn->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(bn_cnode);
|
||||
CheckCNodeInputSize(bn_cnode, kBatchNormInputNum + 1);
|
||||
std::vector<AnfNodePtr> bn_training_reduce_inputs = {
|
||||
NewValueNode(std::make_shared<Primitive>(kBNTrainingReduceOpName)), bn_cnode->input(1)};
|
||||
auto bn_training_reduce = func_graph->NewCNode(bn_training_reduce_inputs);
|
||||
MS_EXCEPTION_IF_NULL(bn_training_reduce);
|
||||
auto bn_input1 = bn_cnode->input(2);
|
||||
MS_EXCEPTION_IF_NULL(bn_input1);
|
||||
auto bn_input2 = bn_cnode->input(3);
|
||||
MS_EXCEPTION_IF_NULL(bn_input2);
|
||||
AbstractBasePtrList abstract_list{bn_input1->abstract(), bn_input2->abstract()};
|
||||
auto abstract_tuple = std::make_shared<abstract::AbstractTuple>(abstract_list);
|
||||
bn_training_reduce->set_abstract(abstract_tuple);
|
||||
bn_training_reduce->set_scope(bn->scope());
|
||||
AnfAlgo::CopyNodeAttrs(bn, bn_training_reduce);
|
||||
return bn_training_reduce;
|
||||
}
|
||||
|
||||
AnfNodePtr CreateBNTrainingUpdateV2(const FuncGraphPtr &func_graph, const AnfNodePtr &bn,
|
||||
const std::vector<AnfNodePtr> &bn_training_reduce_outputs) {
|
||||
MS_EXCEPTION_IF_NULL(func_graph);
|
||||
MS_EXCEPTION_IF_NULL(bn);
|
||||
auto bn_cnode = bn->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(bn_cnode);
|
||||
CheckCNodeInputSize(bn_cnode, kBatchNormInputNum + 1);
|
||||
if (bn_training_reduce_outputs.size() != kBNTrainingReduceOutputNum) {
|
||||
MS_LOG(EXCEPTION) << "The output size of node bn_training_reduce must be " << kBNTrainingReduceOutputNum
|
||||
<< ", but it is " << bn_training_reduce_outputs.size();
|
||||
}
|
||||
std::vector<AnfNodePtr> bn_training_update_v2_inputs = {
|
||||
NewValueNode(std::make_shared<Primitive>(kBNTrainingUpdateV2OpName)),
|
||||
bn_cnode->input(1),
|
||||
bn_training_reduce_outputs[0],
|
||||
bn_training_reduce_outputs[1],
|
||||
bn_cnode->input(2),
|
||||
bn_cnode->input(3)};
|
||||
auto bn_training_update_v2 = func_graph->NewCNode(bn_training_update_v2_inputs);
|
||||
MS_EXCEPTION_IF_NULL(bn_training_update_v2);
|
||||
|
||||
auto bn_abstract_tuple = dyn_cast<abstract::AbstractTuple>(bn->abstract());
|
||||
MS_EXCEPTION_IF_NULL(bn_abstract_tuple);
|
||||
if (bn_abstract_tuple->elements().size() != kBatchNormOutputNum) {
|
||||
MS_LOG(EXCEPTION) << "The abstract size of node bn must be " << kBatchNormOutputNum << ", but it is "
|
||||
<< bn_abstract_tuple->elements().size();
|
||||
}
|
||||
std::vector<AbstractBasePtr> abstract_list{bn_abstract_tuple->elements()[0], bn_abstract_tuple->elements()[3],
|
||||
bn_abstract_tuple->elements()[4]};
|
||||
auto abstract_tuple = std::make_shared<abstract::AbstractTuple>(abstract_list);
|
||||
bn_training_update_v2->set_abstract(abstract_tuple);
|
||||
bn_training_update_v2->set_scope(bn->scope());
|
||||
AnfAlgo::CopyNodeAttrs(bn, bn_training_update_v2);
|
||||
return bn_training_update_v2;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
const BaseRef BatchNormBertFission::DefinePattern() const {
|
||||
VarPtr Xs = std::make_shared<SeqVar>();
|
||||
return VectorRef({prim::kPrimBatchNorm, Xs});
|
||||
}
|
||||
|
||||
const AnfNodePtr BatchNormBertFission::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node,
|
||||
const EquivPtr &) const {
|
||||
MS_EXCEPTION_IF_NULL(func_graph);
|
||||
std::vector<AnfNodePtr> bn_outputs;
|
||||
if (!GetBatchNormOutputs(func_graph, node, &bn_outputs)) {
|
||||
return nullptr;
|
||||
}
|
||||
AnfNodePtr bn_training_reduce = CreateBNTrainingReduce(func_graph, node);
|
||||
std::vector<AnfNodePtr> bn_training_reduce_outputs;
|
||||
CreateMultipleOutputsOfAnfNode(func_graph, bn_training_reduce, kBNTrainingReduceOutputNum,
|
||||
&bn_training_reduce_outputs);
|
||||
|
||||
AnfNodePtr bn_training_update_v2 = CreateBNTrainingUpdateV2(func_graph, node, bn_training_reduce_outputs);
|
||||
std::vector<AnfNodePtr> bn_training_update_v2_outputs;
|
||||
CreateMultipleOutputsOfAnfNode(func_graph, bn_training_update_v2, kBNTrainingUpdateV2OutputNum,
|
||||
&bn_training_update_v2_outputs);
|
||||
if (bn_training_update_v2_outputs.size() != kBNTrainingUpdateV2OutputNum) {
|
||||
MS_LOG(EXCEPTION) << "The output size of node bn_training_reduce must be " << kBNTrainingUpdateV2OutputNum
|
||||
<< ", but it is " << bn_training_update_v2_outputs.size();
|
||||
}
|
||||
auto manager = func_graph->manager();
|
||||
MS_EXCEPTION_IF_NULL(manager);
|
||||
sort(bn_outputs.begin(), bn_outputs.end(), CompareTupleGetitem);
|
||||
size_t output_index = 0;
|
||||
for (const auto &output : bn_outputs) {
|
||||
(void)manager->Replace(output, bn_training_update_v2_outputs[output_index]);
|
||||
output_index++;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,32 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_BERT_FISSION_H_
|
||||
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_BERT_FISSION_H_
|
||||
|
||||
#include "pre_activate/common/optimizer.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class BatchNormBertFission : public PatternProcessPass {
|
||||
public:
|
||||
explicit BatchNormBertFission(bool multigraph = true) : PatternProcessPass("batch_norm_bert_fission", multigraph) {}
|
||||
~BatchNormBertFission() override = default;
|
||||
const BaseRef DefinePattern() const override;
|
||||
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||
};
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_BERT_FISSION_H_
|
|
@ -47,6 +47,8 @@ constexpr size_t kBn2ReluOutputNum = 4;
|
|||
|
||||
constexpr size_t kBnInputNum = 6;
|
||||
constexpr size_t kBnOutputNum = 5;
|
||||
constexpr size_t kBatchNormInputNum = 5;
|
||||
constexpr size_t kBatchNormOutputNum = 5;
|
||||
|
||||
constexpr size_t kBN1OutputNum = 2;
|
||||
constexpr size_t kBN2OutputNum = 3;
|
||||
|
@ -61,6 +63,7 @@ constexpr size_t kBNGrad3OutputNum = 1;
|
|||
|
||||
constexpr size_t kBNTrainingReduceOutputNum = 2;
|
||||
constexpr size_t kBNTrainingUpdateOutputNum = 5;
|
||||
constexpr size_t kBNTrainingUpdateV2OutputNum = 3;
|
||||
constexpr size_t kBNTrainingUpdateGradOutputNum = 2;
|
||||
|
||||
constexpr size_t kSingleOutputNum = 1;
|
||||
|
|
|
@ -52,6 +52,7 @@ constexpr auto kTopKOpName = "TopK";
|
|||
constexpr auto kExtractImagePatchesOpName = "ExtractImagePatches";
|
||||
constexpr auto kBNTrainingReduceOpName = "BNTrainingReduce";
|
||||
constexpr auto kBNTrainingUpdateOpName = "BNTrainingUpdate";
|
||||
constexpr auto kBNTrainingUpdateV2OpName = "BNTrainingUpdateV2";
|
||||
constexpr auto kSimpleMeanGradOpName = "SimpleMeanGrad";
|
||||
constexpr auto kMeanGradOpName = "MeanGrad";
|
||||
constexpr auto kSliceOpName = "Slice";
|
||||
|
|
|
@ -0,0 +1,54 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h"
|
||||
#include "common/backend_common_test.h"
|
||||
#include "common/py_func_graph_fetcher.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class TestHWBatchNormBertFission : public BackendCommon {
|
||||
public:
|
||||
TestHWBatchNormBertFission() : get_py_fun_("gtest_input.pre_activate.batch_norm_bert_fission_test", true) {}
|
||||
~TestHWBatchNormBertFission() override = default;
|
||||
|
||||
UT::PyFuncGraphFetcher get_py_fun_;
|
||||
};
|
||||
|
||||
TEST_F(TestHWBatchNormBertFission, test_fused_batch_norm_fusion) {
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_batch_norm_bert_fission", "before");
|
||||
EXPECT_NE(g, nullptr);
|
||||
std::vector<int> shp_x{32, 64, 112, 112};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
|
||||
std::vector<int> shp_y{64};
|
||||
auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_y);
|
||||
AbstractBasePtrList args_spec_list{x_abstract};
|
||||
for (size_t i = 0; i < 4; ++i) {
|
||||
args_spec_list.push_back(y_abstract);
|
||||
}
|
||||
auto kg = GetKernelGraph(g, args_spec_list);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
pm->AddPass(std::make_shared<opt::BatchNormBertFission>());
|
||||
optimizer->AddPassManager(pm);
|
||||
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_batch_norm_bert_fission", "after");
|
||||
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,56 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import Primitive
|
||||
|
||||
make_tuple = Primitive('make_tuple')
|
||||
tuple_getitem = Primitive('tuple_getitem')
|
||||
BatchNorm = P.BatchNorm()
|
||||
BNTrainingReduce = Primitive('BNTrainingReduce')
|
||||
BNTrainingUpdateV2 = Primitive('BNTrainingUpdateV2')
|
||||
|
||||
|
||||
class FnDict:
|
||||
def __init__(self):
|
||||
self.fnDict = {}
|
||||
|
||||
def __call__(self, fn):
|
||||
self.fnDict[fn.__name__] = fn
|
||||
|
||||
def __getitem__(self, name):
|
||||
return self.fnDict[name]
|
||||
|
||||
|
||||
def test_batch_norm_bert_fission(tag):
|
||||
fns = FnDict()
|
||||
|
||||
@fns
|
||||
def before(input0, input1, input2, input3, input4):
|
||||
batch_norm = BatchNorm(input0, input1, input2, input3, input4)
|
||||
outputs = make_tuple(tuple_getitem(batch_norm, 0), tuple_getitem(batch_norm, 3), tuple_getitem(batch_norm, 4))
|
||||
output = tuple_getitem(outputs, 0)
|
||||
return output
|
||||
|
||||
@fns
|
||||
def after(input0, input1, input2, input3, input4):
|
||||
bn_training_reduce = BNTrainingReduce(input0)
|
||||
bn_training_update_v2 = BNTrainingUpdateV2(input0, tuple_getitem(bn_training_reduce, 0),
|
||||
tuple_getitem(bn_training_reduce, 1), input1, input2)
|
||||
outputs = make_tuple(tuple_getitem(bn_training_update_v2, 0), tuple_getitem(bn_training_update_v2, 1),
|
||||
tuple_getitem(bn_training_update_v2, 2))
|
||||
output = tuple_getitem(outputs, 0)
|
||||
return make_tuple(output)
|
||||
|
||||
return fns[tag]
|
Loading…
Reference in New Issue