Add batch norm bert fission pass

This commit is contained in:
YuJianfeng 2020-04-30 15:31:33 +08:00 committed by yujianfeng
parent 2b3192259d
commit aa6f808616
7 changed files with 318 additions and 0 deletions

View File

@ -20,6 +20,7 @@
#include "pre_activate/ascend/ir_fission/bn_split.h"
#include "pre_activate/ascend/ir_fission/bn_grad_split.h"
#include "pre_activate/ascend/ir_fission/batch_norm_grad_split.h"
#include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h"
#include "pre_activate/ascend/ir_fusion/fused_batch_norm_fusion.h"
#include "pre_activate/ascend/ir_fission/layer_norm_grad_split.h"
#include "pre_activate/pass/communication_op_fusion.h"
@ -76,6 +77,7 @@ namespace opt {
namespace {
void AddAscendBackendOptionalIRFusion(PassManager *ir_fusion_pm) {
MS_EXCEPTION_IF_NULL(ir_fusion_pm);
ir_fusion_pm->AddPass(std::make_shared<BatchNormBertFission>());
ir_fusion_pm->AddPass(std::make_shared<SquareSumFusion>());
ir_fusion_pm->AddPass(std::make_shared<ClipByNormNoDivSquareSumFusion>());
ir_fusion_pm->AddPass(std::make_shared<LambUpdateWithLRRuleFusion>());

View File

@ -0,0 +1,170 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h"
#include <vector>
#include <memory>
#include <algorithm>
#include "session/anf_runtime_algorithm.h"
#include "pre_activate/common/helper.h"
namespace mindspore {
namespace opt {
namespace {
const std::vector<int> kOutputIndex{0, 3, 4, 5};
constexpr size_t kBatchNormRealOutputNum = 3;
bool CompareTupleGetitem(const AnfNodePtr &n1, const AnfNodePtr &n2) {
MS_EXCEPTION_IF_NULL(n1);
MS_EXCEPTION_IF_NULL(n2);
auto n1_cnode = n1->cast<CNodePtr>();
auto n2_cnode = n2->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(n1_cnode);
MS_EXCEPTION_IF_NULL(n2_cnode);
auto index_input1 = n1_cnode->input(kInputNodeOutputIndexInTupleGetItem);
MS_EXCEPTION_IF_NULL(index_input1);
auto value_node1 = index_input1->cast<ValueNodePtr>();
MS_EXCEPTION_IF_NULL(value_node1);
auto index_input2 = n2_cnode->input(kInputNodeOutputIndexInTupleGetItem);
MS_EXCEPTION_IF_NULL(index_input2);
auto value_node2 = index_input2->cast<ValueNodePtr>();
MS_EXCEPTION_IF_NULL(value_node2);
return GetValue<int>(value_node1->value()) < GetValue<int>(value_node2->value());
}
bool GetBatchNormOutputs(const FuncGraphPtr &func_graph, const AnfNodePtr &bn, std::vector<AnfNodePtr> *bn_outputs) {
MS_EXCEPTION_IF_NULL(func_graph);
MS_EXCEPTION_IF_NULL(bn_outputs);
auto manager = func_graph->manager();
MS_EXCEPTION_IF_NULL(manager);
if (manager->node_users().find(bn) == manager->node_users().end()) {
return false;
}
size_t output_num = 0;
for (const auto &node_index : manager->node_users()[bn]) {
AnfNodePtr output = node_index.first;
MS_EXCEPTION_IF_NULL(output);
auto tuple_getiterm_cnode = output->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(tuple_getiterm_cnode);
auto index_node = tuple_getiterm_cnode->input(kInputNodeOutputIndexInTupleGetItem);
MS_EXCEPTION_IF_NULL(index_node);
auto value_node = index_node->cast<ValueNodePtr>();
MS_EXCEPTION_IF_NULL(value_node);
int index = GetValue<int>(value_node->value());
if (std::find(kOutputIndex.begin(), kOutputIndex.end(), index) == kOutputIndex.end()) {
return false;
}
bn_outputs->push_back(output);
output_num++;
}
return output_num == kBatchNormRealOutputNum;
}
AnfNodePtr CreateBNTrainingReduce(const FuncGraphPtr &func_graph, const AnfNodePtr &bn) {
MS_EXCEPTION_IF_NULL(func_graph);
MS_EXCEPTION_IF_NULL(bn);
auto bn_cnode = bn->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(bn_cnode);
CheckCNodeInputSize(bn_cnode, kBatchNormInputNum + 1);
std::vector<AnfNodePtr> bn_training_reduce_inputs = {
NewValueNode(std::make_shared<Primitive>(kBNTrainingReduceOpName)), bn_cnode->input(1)};
auto bn_training_reduce = func_graph->NewCNode(bn_training_reduce_inputs);
MS_EXCEPTION_IF_NULL(bn_training_reduce);
auto bn_input1 = bn_cnode->input(2);
MS_EXCEPTION_IF_NULL(bn_input1);
auto bn_input2 = bn_cnode->input(3);
MS_EXCEPTION_IF_NULL(bn_input2);
AbstractBasePtrList abstract_list{bn_input1->abstract(), bn_input2->abstract()};
auto abstract_tuple = std::make_shared<abstract::AbstractTuple>(abstract_list);
bn_training_reduce->set_abstract(abstract_tuple);
bn_training_reduce->set_scope(bn->scope());
AnfAlgo::CopyNodeAttrs(bn, bn_training_reduce);
return bn_training_reduce;
}
AnfNodePtr CreateBNTrainingUpdateV2(const FuncGraphPtr &func_graph, const AnfNodePtr &bn,
const std::vector<AnfNodePtr> &bn_training_reduce_outputs) {
MS_EXCEPTION_IF_NULL(func_graph);
MS_EXCEPTION_IF_NULL(bn);
auto bn_cnode = bn->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(bn_cnode);
CheckCNodeInputSize(bn_cnode, kBatchNormInputNum + 1);
if (bn_training_reduce_outputs.size() != kBNTrainingReduceOutputNum) {
MS_LOG(EXCEPTION) << "The output size of node bn_training_reduce must be " << kBNTrainingReduceOutputNum
<< ", but it is " << bn_training_reduce_outputs.size();
}
std::vector<AnfNodePtr> bn_training_update_v2_inputs = {
NewValueNode(std::make_shared<Primitive>(kBNTrainingUpdateV2OpName)),
bn_cnode->input(1),
bn_training_reduce_outputs[0],
bn_training_reduce_outputs[1],
bn_cnode->input(2),
bn_cnode->input(3)};
auto bn_training_update_v2 = func_graph->NewCNode(bn_training_update_v2_inputs);
MS_EXCEPTION_IF_NULL(bn_training_update_v2);
auto bn_abstract_tuple = dyn_cast<abstract::AbstractTuple>(bn->abstract());
MS_EXCEPTION_IF_NULL(bn_abstract_tuple);
if (bn_abstract_tuple->elements().size() != kBatchNormOutputNum) {
MS_LOG(EXCEPTION) << "The abstract size of node bn must be " << kBatchNormOutputNum << ", but it is "
<< bn_abstract_tuple->elements().size();
}
std::vector<AbstractBasePtr> abstract_list{bn_abstract_tuple->elements()[0], bn_abstract_tuple->elements()[3],
bn_abstract_tuple->elements()[4]};
auto abstract_tuple = std::make_shared<abstract::AbstractTuple>(abstract_list);
bn_training_update_v2->set_abstract(abstract_tuple);
bn_training_update_v2->set_scope(bn->scope());
AnfAlgo::CopyNodeAttrs(bn, bn_training_update_v2);
return bn_training_update_v2;
}
} // namespace
const BaseRef BatchNormBertFission::DefinePattern() const {
VarPtr Xs = std::make_shared<SeqVar>();
return VectorRef({prim::kPrimBatchNorm, Xs});
}
const AnfNodePtr BatchNormBertFission::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node,
const EquivPtr &) const {
MS_EXCEPTION_IF_NULL(func_graph);
std::vector<AnfNodePtr> bn_outputs;
if (!GetBatchNormOutputs(func_graph, node, &bn_outputs)) {
return nullptr;
}
AnfNodePtr bn_training_reduce = CreateBNTrainingReduce(func_graph, node);
std::vector<AnfNodePtr> bn_training_reduce_outputs;
CreateMultipleOutputsOfAnfNode(func_graph, bn_training_reduce, kBNTrainingReduceOutputNum,
&bn_training_reduce_outputs);
AnfNodePtr bn_training_update_v2 = CreateBNTrainingUpdateV2(func_graph, node, bn_training_reduce_outputs);
std::vector<AnfNodePtr> bn_training_update_v2_outputs;
CreateMultipleOutputsOfAnfNode(func_graph, bn_training_update_v2, kBNTrainingUpdateV2OutputNum,
&bn_training_update_v2_outputs);
if (bn_training_update_v2_outputs.size() != kBNTrainingUpdateV2OutputNum) {
MS_LOG(EXCEPTION) << "The output size of node bn_training_reduce must be " << kBNTrainingUpdateV2OutputNum
<< ", but it is " << bn_training_update_v2_outputs.size();
}
auto manager = func_graph->manager();
MS_EXCEPTION_IF_NULL(manager);
sort(bn_outputs.begin(), bn_outputs.end(), CompareTupleGetitem);
size_t output_index = 0;
for (const auto &output : bn_outputs) {
(void)manager->Replace(output, bn_training_update_v2_outputs[output_index]);
output_index++;
}
return nullptr;
}
} // namespace opt
} // namespace mindspore

View File

@ -0,0 +1,32 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_BERT_FISSION_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_BERT_FISSION_H_
#include "pre_activate/common/optimizer.h"
namespace mindspore {
namespace opt {
class BatchNormBertFission : public PatternProcessPass {
public:
explicit BatchNormBertFission(bool multigraph = true) : PatternProcessPass("batch_norm_bert_fission", multigraph) {}
~BatchNormBertFission() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_BERT_FISSION_H_

View File

@ -47,6 +47,8 @@ constexpr size_t kBn2ReluOutputNum = 4;
constexpr size_t kBnInputNum = 6;
constexpr size_t kBnOutputNum = 5;
constexpr size_t kBatchNormInputNum = 5;
constexpr size_t kBatchNormOutputNum = 5;
constexpr size_t kBN1OutputNum = 2;
constexpr size_t kBN2OutputNum = 3;
@ -61,6 +63,7 @@ constexpr size_t kBNGrad3OutputNum = 1;
constexpr size_t kBNTrainingReduceOutputNum = 2;
constexpr size_t kBNTrainingUpdateOutputNum = 5;
constexpr size_t kBNTrainingUpdateV2OutputNum = 3;
constexpr size_t kBNTrainingUpdateGradOutputNum = 2;
constexpr size_t kSingleOutputNum = 1;

View File

@ -52,6 +52,7 @@ constexpr auto kTopKOpName = "TopK";
constexpr auto kExtractImagePatchesOpName = "ExtractImagePatches";
constexpr auto kBNTrainingReduceOpName = "BNTrainingReduce";
constexpr auto kBNTrainingUpdateOpName = "BNTrainingUpdate";
constexpr auto kBNTrainingUpdateV2OpName = "BNTrainingUpdateV2";
constexpr auto kSimpleMeanGradOpName = "SimpleMeanGrad";
constexpr auto kMeanGradOpName = "MeanGrad";
constexpr auto kSliceOpName = "Slice";

View File

@ -0,0 +1,54 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h"
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
namespace mindspore {
namespace opt {
class TestHWBatchNormBertFission : public BackendCommon {
public:
TestHWBatchNormBertFission() : get_py_fun_("gtest_input.pre_activate.batch_norm_bert_fission_test", true) {}
~TestHWBatchNormBertFission() override = default;
UT::PyFuncGraphFetcher get_py_fun_;
};
TEST_F(TestHWBatchNormBertFission, test_fused_batch_norm_fusion) {
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_batch_norm_bert_fission", "before");
EXPECT_NE(g, nullptr);
std::vector<int> shp_x{32, 64, 112, 112};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
std::vector<int> shp_y{64};
auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_y);
AbstractBasePtrList args_spec_list{x_abstract};
for (size_t i = 0; i < 4; ++i) {
args_spec_list.push_back(y_abstract);
}
auto kg = GetKernelGraph(g, args_spec_list);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
pm->AddPass(std::make_shared<opt::BatchNormBertFission>());
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_batch_norm_bert_fission", "after");
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
}
} // namespace opt
} // namespace mindspore

View File

@ -0,0 +1,56 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from mindspore.ops import operations as P
from mindspore.ops import Primitive
make_tuple = Primitive('make_tuple')
tuple_getitem = Primitive('tuple_getitem')
BatchNorm = P.BatchNorm()
BNTrainingReduce = Primitive('BNTrainingReduce')
BNTrainingUpdateV2 = Primitive('BNTrainingUpdateV2')
class FnDict:
def __init__(self):
self.fnDict = {}
def __call__(self, fn):
self.fnDict[fn.__name__] = fn
def __getitem__(self, name):
return self.fnDict[name]
def test_batch_norm_bert_fission(tag):
fns = FnDict()
@fns
def before(input0, input1, input2, input3, input4):
batch_norm = BatchNorm(input0, input1, input2, input3, input4)
outputs = make_tuple(tuple_getitem(batch_norm, 0), tuple_getitem(batch_norm, 3), tuple_getitem(batch_norm, 4))
output = tuple_getitem(outputs, 0)
return output
@fns
def after(input0, input1, input2, input3, input4):
bn_training_reduce = BNTrainingReduce(input0)
bn_training_update_v2 = BNTrainingUpdateV2(input0, tuple_getitem(bn_training_reduce, 0),
tuple_getitem(bn_training_reduce, 1), input1, input2)
outputs = make_tuple(tuple_getitem(bn_training_update_v2, 0), tuple_getitem(bn_training_update_v2, 1),
tuple_getitem(bn_training_update_v2, 2))
output = tuple_getitem(outputs, 0)
return make_tuple(output)
return fns[tag]