forked from mindspore-Ecosystem/mindspore
!1482 add globalbn for vm
Merge pull request !1482 from JichenZhao/layernorm_mean_var_shape
This commit is contained in:
commit
a95c544499
|
@ -156,19 +156,23 @@ class _BatchNorm(Cell):
|
|||
axes, re_shape = _shape_infer(F.shape(x), self.num_features)
|
||||
y = self._global_sync(x, axes, re_shape)
|
||||
elif self.is_graph_mode and (self.is_ge_backend or self.is_ascend):
|
||||
y, batch_mean, batch_var, _, _ = \
|
||||
self.bn_train(x,
|
||||
self.gamma,
|
||||
self.beta,
|
||||
None,
|
||||
None)
|
||||
if self.is_global:
|
||||
axes, re_shape = _shape_infer(F.shape(x), self.num_features)
|
||||
y = self._global_sync(x, axes, re_shape)
|
||||
else:
|
||||
y, batch_mean, batch_var, _, _ = \
|
||||
self.bn_train(x,
|
||||
self.gamma,
|
||||
self.beta,
|
||||
None,
|
||||
None)
|
||||
|
||||
mean_sub = self.sub_mean(self.moving_mean, batch_mean)
|
||||
temp_mean = self.mul_mean(mean_sub, self.momentum)
|
||||
mean_sub2 = self.sub_var(self.moving_variance, batch_var)
|
||||
temp_variance = self.mul_var(mean_sub2, self.momentum)
|
||||
y = F.depend(y, self.assign_sub_mean(self.moving_mean, temp_mean))
|
||||
y = F.depend(y, self.assign_sub_var(self.moving_variance, temp_variance))
|
||||
mean_sub = self.sub_mean(self.moving_mean, batch_mean)
|
||||
temp_mean = self.mul_mean(mean_sub, self.momentum)
|
||||
mean_sub2 = self.sub_var(self.moving_variance, batch_var)
|
||||
temp_variance = self.mul_var(mean_sub2, self.momentum)
|
||||
y = F.depend(y, self.assign_sub_mean(self.moving_mean, temp_mean))
|
||||
y = F.depend(y, self.assign_sub_var(self.moving_variance, temp_variance))
|
||||
else:
|
||||
y = self.bn_train(x,
|
||||
self.gamma,
|
||||
|
|
|
@ -184,7 +184,7 @@ class AvgPool2d(_PoolNd):
|
|||
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
||||
|
||||
Examples:
|
||||
>>> pool = nn.AvgPool2d(kernel_size=3, strides=1)
|
||||
>>> pool = nn.AvgPool2d(kernel_size=3, stride=1)
|
||||
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
|
||||
[[[[5. 5. 9. 9.]
|
||||
[8. 4. 3. 0.]
|
||||
|
|
Loading…
Reference in New Issue