forked from mindspore-Ecosystem/mindspore
!2253 Add ConcatOp to Dataset
Merge pull request !2253 from nhussain/concat_op
This commit is contained in:
commit
a83baafbf6
|
@ -17,6 +17,7 @@
|
||||||
|
|
||||||
#include "dataset/api/de_pipeline.h"
|
#include "dataset/api/de_pipeline.h"
|
||||||
#include "dataset/kernels/no_op.h"
|
#include "dataset/kernels/no_op.h"
|
||||||
|
#include "dataset/kernels/data/concatenate_op.h"
|
||||||
#include "dataset/kernels/data/one_hot_op.h"
|
#include "dataset/kernels/data/one_hot_op.h"
|
||||||
#include "dataset/kernels/image/center_crop_op.h"
|
#include "dataset/kernels/image/center_crop_op.h"
|
||||||
#include "dataset/kernels/image/cut_out_op.h"
|
#include "dataset/kernels/image/cut_out_op.h"
|
||||||
|
@ -434,6 +435,11 @@ void bindTensorOps2(py::module *m) {
|
||||||
*m, "TruncateSequencePairOp", "Tensor operation to truncate two tensors to a max_length")
|
*m, "TruncateSequencePairOp", "Tensor operation to truncate two tensors to a max_length")
|
||||||
.def(py::init<int64_t>());
|
.def(py::init<int64_t>());
|
||||||
|
|
||||||
|
(void)py::class_<ConcatenateOp, TensorOp, std::shared_ptr<ConcatenateOp>>(*m, "ConcatenateOp",
|
||||||
|
"Tensor operation concatenate tensors.")
|
||||||
|
.def(py::init<int8_t, std::shared_ptr<Tensor>, std::shared_ptr<Tensor>>(), py::arg("axis"),
|
||||||
|
py::arg("prepend").none(true), py::arg("append").none(true));
|
||||||
|
|
||||||
(void)py::class_<RandomRotationOp, TensorOp, std::shared_ptr<RandomRotationOp>>(
|
(void)py::class_<RandomRotationOp, TensorOp, std::shared_ptr<RandomRotationOp>>(
|
||||||
*m, "RandomRotationOp",
|
*m, "RandomRotationOp",
|
||||||
"Tensor operation to apply RandomRotation."
|
"Tensor operation to apply RandomRotation."
|
||||||
|
|
|
@ -589,11 +589,13 @@ Status Tensor::StartAddrOfIndex(std::vector<dsize_t> ind, uchar **start_addr_of_
|
||||||
if (type() == DataType::DE_STRING) {
|
if (type() == DataType::DE_STRING) {
|
||||||
RETURN_STATUS_UNEXPECTED("StartAddrOfIndex does not support string tensors yet.");
|
RETURN_STATUS_UNEXPECTED("StartAddrOfIndex does not support string tensors yet.");
|
||||||
}
|
}
|
||||||
|
|
||||||
dsize_t flat_ind;
|
dsize_t flat_ind;
|
||||||
std::vector<dsize_t> t_shape = shape().AsVector();
|
std::vector<dsize_t> t_shape = shape().AsVector();
|
||||||
std::vector<dsize_t> r(t_shape.begin() + ind.size(), t_shape.end());
|
std::vector<dsize_t> r(t_shape.begin() + ind.size(), t_shape.end());
|
||||||
*remaining = TensorShape(r);
|
*remaining = TensorShape(r);
|
||||||
ind.resize(this->Rank(), 0); // same as -> while (ind.size() < this->Rank()) ind.push_back(0);
|
ind.resize(this->Rank(), 0); // same as -> while (ind.size() < this->Rank()) ind.push_back(0);
|
||||||
|
|
||||||
RETURN_IF_NOT_OK(shape_.ToFlatIndex(ind, &flat_ind));
|
RETURN_IF_NOT_OK(shape_.ToFlatIndex(ind, &flat_ind));
|
||||||
// check if GetBuffer() returns null, we should flag this as an error, this sanity check will only
|
// check if GetBuffer() returns null, we should flag this as an error, this sanity check will only
|
||||||
// be true is the tensor failed to allocate memory.
|
// be true is the tensor failed to allocate memory.
|
||||||
|
@ -634,6 +636,39 @@ Status Tensor::InsertTensor(const std::vector<dsize_t> &ind, const std::shared_p
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Status Tensor::Concatenate(const std::vector<dsize_t> &index, const std::shared_ptr<Tensor> &tensor) {
|
||||||
|
std::string err_msg;
|
||||||
|
err_msg += (index.size() != 1) ? "[Tensor] only supports 1d concatenation \n" : "";
|
||||||
|
err_msg += (type() == DataType::DE_STRING) ? "[Tensor] Cannot batch tensors of type string\n" : "";
|
||||||
|
err_msg += (!shape().known() || !tensor->shape().known()) ? "[Tensor] unknown shape\n" : "";
|
||||||
|
|
||||||
|
err_msg +=
|
||||||
|
(index.at(0) + tensor->shape().NumOfElements() > this->shape().NumOfElements()) ? "[Tensor] incorrect index\n" : "";
|
||||||
|
err_msg += tensor->type().SizeInBytes() != this->type().SizeInBytes() ? "[Tensor] incorrect datatype\n" : "";
|
||||||
|
uchar *start_addr_of_ind = nullptr;
|
||||||
|
|
||||||
|
TensorShape remaining_shape = tensor->shape();
|
||||||
|
StartAddrOfIndex(index, &start_addr_of_ind, &remaining_shape);
|
||||||
|
err_msg += (start_addr_of_ind == nullptr) ? "Failed to create memory for Tensor.\n" : "";
|
||||||
|
|
||||||
|
if (!err_msg.empty()) {
|
||||||
|
MS_LOG(DEBUG) << "Insert tensor message: " << err_msg;
|
||||||
|
|
||||||
|
RETURN_STATUS_UNEXPECTED(err_msg);
|
||||||
|
} else {
|
||||||
|
int ret_code =
|
||||||
|
memcpy_s(start_addr_of_ind, tensor->SizeInBytes(), tensor->GetMutableBuffer(), tensor->SizeInBytes());
|
||||||
|
|
||||||
|
if (ret_code == 0) {
|
||||||
|
return Status::OK();
|
||||||
|
} else {
|
||||||
|
err_msg += "[Tensor] error in memcpy_s when inserting tensor\n";
|
||||||
|
MS_LOG(DEBUG) << "Tensor message: " << err_msg;
|
||||||
|
RETURN_STATUS_UNEXPECTED(err_msg);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
Status Tensor::ExpandDim(const dsize_t &axis) {
|
Status Tensor::ExpandDim(const dsize_t &axis) {
|
||||||
if (axis > Rank()) {
|
if (axis > Rank()) {
|
||||||
std::string err = "Axis is out of bound";
|
std::string err = "Axis is out of bound";
|
||||||
|
|
|
@ -372,6 +372,9 @@ class Tensor {
|
||||||
|
|
||||||
static Status GetBufferInfo(Tensor &t, py::buffer_info *out);
|
static Status GetBufferInfo(Tensor &t, py::buffer_info *out);
|
||||||
|
|
||||||
|
// Concatenate based on given tensor, can fill in current tensor with a smaller one, unlike InsertTensor
|
||||||
|
Status Concatenate(const std::vector<dsize_t> &index, const std::shared_ptr<Tensor> &input);
|
||||||
|
|
||||||
// TensorIterator is a linear iterator that can be used to iterate over the elements of the Tensor
|
// TensorIterator is a linear iterator that can be used to iterate over the elements of the Tensor
|
||||||
// The order elements is as the memory layout (i.e., row-major) [[1,2,3],[4,5,6] --> 1,2,3,4,5,6
|
// The order elements is as the memory layout (i.e., row-major) [[1,2,3],[4,5,6] --> 1,2,3,4,5,6
|
||||||
// @tparam T type of values in the Tensor Iterator
|
// @tparam T type of values in the Tensor Iterator
|
||||||
|
|
|
@ -94,7 +94,7 @@ class TensorShape {
|
||||||
// @return
|
// @return
|
||||||
TensorShape PrependDim(dsize_t dim) const;
|
TensorShape PrependDim(dsize_t dim) const;
|
||||||
|
|
||||||
// Insert a new dim at the end of the shape. For example, <2,4> --> PrependDim(4) --> <2,4,4>
|
// Insert a new dim at the end of the shape. For example, <2,4> --> AppendDim(4) --> <2,4,4>
|
||||||
// @param dim
|
// @param dim
|
||||||
// @return
|
// @return
|
||||||
TensorShape AppendDim(dsize_t dim) const;
|
TensorShape AppendDim(dsize_t dim) const;
|
||||||
|
|
|
@ -1,12 +1,13 @@
|
||||||
file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc")
|
file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc")
|
||||||
set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD)
|
set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD)
|
||||||
add_library(kernels-data OBJECT
|
add_library(kernels-data OBJECT
|
||||||
data_utils.cc
|
data_utils.cc
|
||||||
one_hot_op.cc
|
one_hot_op.cc
|
||||||
pad_end_op.cc
|
pad_end_op.cc
|
||||||
type_cast_op.cc
|
type_cast_op.cc
|
||||||
to_float16_op.cc
|
to_float16_op.cc
|
||||||
fill_op.cc
|
fill_op.cc
|
||||||
slice_op.cc
|
slice_op.cc
|
||||||
mask_op.cc
|
mask_op.cc
|
||||||
)
|
concatenate_op.cc
|
||||||
|
)
|
||||||
|
|
|
@ -0,0 +1,55 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include "dataset/kernels/data/concatenate_op.h"
|
||||||
|
|
||||||
|
#include "dataset/core/tensor.h"
|
||||||
|
#include "dataset/kernels/data/data_utils.h"
|
||||||
|
#include "dataset/kernels/tensor_op.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace dataset {
|
||||||
|
|
||||||
|
Status ConcatenateOp::Compute(const TensorRow &input, TensorRow *output) {
|
||||||
|
IO_CHECK_VECTOR(input, output);
|
||||||
|
RETURN_IF_NOT_OK(Concatenate(input, output, axis_, prepend_, append_));
|
||||||
|
return Status::OK();
|
||||||
|
}
|
||||||
|
|
||||||
|
Status ConcatenateOp::OutputShape(const std::vector<TensorShape> &inputs, std::vector<TensorShape> &outputs) {
|
||||||
|
RETURN_IF_NOT_OK(TensorOp::OutputShape(inputs, outputs));
|
||||||
|
|
||||||
|
std::vector<TensorShape> inputs_copy;
|
||||||
|
inputs_copy.push_back(inputs[0].Squeeze());
|
||||||
|
|
||||||
|
CHECK_FAIL_RETURN_UNEXPECTED(inputs.at(0).Rank() == 1, "Only 1D input tensors supported");
|
||||||
|
|
||||||
|
outputs.clear();
|
||||||
|
dsize_t output_shape = 0;
|
||||||
|
output_shape = output_shape + inputs.at(0).NumOfElements();
|
||||||
|
if (prepend_ != nullptr) {
|
||||||
|
CHECK_FAIL_RETURN_UNEXPECTED(prepend_->shape().Rank() == 1, "Only 1D prepend tensors supported");
|
||||||
|
output_shape = output_shape + prepend_->shape().NumOfElements();
|
||||||
|
}
|
||||||
|
if (append_ != nullptr) {
|
||||||
|
CHECK_FAIL_RETURN_UNEXPECTED(append_->shape().Rank() == 1, "Only 1D append tensors supported");
|
||||||
|
output_shape = output_shape + append_->shape().NumOfElements();
|
||||||
|
}
|
||||||
|
|
||||||
|
outputs.emplace_back(std::vector<dsize_t>{output_shape});
|
||||||
|
return Status::OK();
|
||||||
|
}
|
||||||
|
} // namespace dataset
|
||||||
|
} // namespace mindspore
|
|
@ -0,0 +1,66 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef DATASET_KERNELS_DATA_CONCATENATE_OP_H_
|
||||||
|
#define DATASET_KERNELS_DATA_CONCATENATE_OP_H_
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
#include "dataset/core/tensor.h"
|
||||||
|
#include "dataset/kernels/tensor_op.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace dataset {
|
||||||
|
|
||||||
|
class ConcatenateOp : public TensorOp {
|
||||||
|
public:
|
||||||
|
/// Constructor to ConcatenateOp.
|
||||||
|
/// @param int8_t axis - axis to concatenate tensors along.
|
||||||
|
/// @param std::shared_ptr<Tensor> prepend - prepend tensor.
|
||||||
|
/// @param std::shared_ptr<Tensor> append -append tensor.
|
||||||
|
explicit ConcatenateOp(int8_t axis, std::shared_ptr<Tensor> prepend, std::shared_ptr<Tensor> append)
|
||||||
|
: axis_(axis), prepend_(prepend), append_(append) {}
|
||||||
|
|
||||||
|
~ConcatenateOp() override = default;
|
||||||
|
|
||||||
|
/// Print method to see which tensor Op this is.
|
||||||
|
/// @param std::ostream &out - output stream object.
|
||||||
|
void Print(std::ostream &out) const override { out << "ConcatenateOp"; }
|
||||||
|
|
||||||
|
/// Compute method allowing multiple tensors as inputs
|
||||||
|
/// @param TensorRow &input - input tensor rows
|
||||||
|
/// @param TensorRow *output - output tensor rows
|
||||||
|
Status Compute(const TensorRow &input, TensorRow *output) override;
|
||||||
|
|
||||||
|
/// Compute tensor output shape
|
||||||
|
/// @param std::vector<TensorShape> &inputs - vector of input tensor shapes
|
||||||
|
/// @param std::vector<TensorShape< &outputs - vector of output tensor shapes
|
||||||
|
Status OutputShape(const std::vector<TensorShape> &inputs, std::vector<TensorShape> &outputs) override;
|
||||||
|
|
||||||
|
/// Number of inputs the tensor operation accepts
|
||||||
|
uint32_t NumInput() override { return 0; }
|
||||||
|
|
||||||
|
private:
|
||||||
|
int8_t axis_;
|
||||||
|
std::shared_ptr<Tensor> prepend_;
|
||||||
|
std::shared_ptr<Tensor> append_;
|
||||||
|
};
|
||||||
|
} // namespace dataset
|
||||||
|
} // namespace mindspore
|
||||||
|
|
||||||
|
#endif // MINDSPORE_CONCATENATE_OP_H
|
|
@ -555,5 +555,80 @@ Status Mask(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *outpu
|
||||||
}
|
}
|
||||||
return Status::OK();
|
return Status::OK();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Status Concatenate(const TensorRow &input, TensorRow *output, int8_t axis, std::shared_ptr<Tensor> prepend,
|
||||||
|
std::shared_ptr<Tensor> append) {
|
||||||
|
CHECK_FAIL_RETURN_UNEXPECTED(input[0]->shape().Rank() == 1, "Only 1D tensors supported");
|
||||||
|
CHECK_FAIL_RETURN_UNEXPECTED(axis == 0 || axis == -1, "Only concatenation along the last dimension supported");
|
||||||
|
|
||||||
|
Tensor::HandleNeg(axis, input[0]->shape().Rank());
|
||||||
|
CHECK_FAIL_RETURN_UNEXPECTED(axis == 0, "Only axis=0 is supported");
|
||||||
|
|
||||||
|
std::shared_ptr<Tensor> out;
|
||||||
|
if (prepend != nullptr) {
|
||||||
|
CHECK_FAIL_RETURN_UNEXPECTED(prepend->shape().Rank() == 1, "Only 1D tensors supported");
|
||||||
|
RETURN_IF_NOT_OK(ConcatenateHelper(prepend, &out, axis, input[0]));
|
||||||
|
} else {
|
||||||
|
out = input[0];
|
||||||
|
}
|
||||||
|
for (dsize_t i = 1; i < input.size(); i++) {
|
||||||
|
std::shared_ptr<Tensor> out_t;
|
||||||
|
CHECK_FAIL_RETURN_UNEXPECTED(input[i]->shape().Rank() == 1, "Only 1D tensors supported");
|
||||||
|
RETURN_IF_NOT_OK(ConcatenateHelper(out, &out_t, axis, input[i]));
|
||||||
|
out = out_t;
|
||||||
|
}
|
||||||
|
std::shared_ptr<Tensor> out_t;
|
||||||
|
if (append != nullptr) {
|
||||||
|
CHECK_FAIL_RETURN_UNEXPECTED(append->shape().Rank() == 1, "Only 1D tensors supported");
|
||||||
|
RETURN_IF_NOT_OK(ConcatenateHelper(out, &out_t, axis, append));
|
||||||
|
} else {
|
||||||
|
out_t = out;
|
||||||
|
}
|
||||||
|
output->push_back(out_t);
|
||||||
|
|
||||||
|
return Status::OK();
|
||||||
|
}
|
||||||
|
|
||||||
|
Status ConcatenateHelper(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int8_t axis,
|
||||||
|
std::shared_ptr<Tensor> append) {
|
||||||
|
CHECK_FAIL_RETURN_UNEXPECTED(input->type() == append->type(), "Tensor types do not match");
|
||||||
|
|
||||||
|
TensorShape t({});
|
||||||
|
|
||||||
|
for (dsize_t i = 0; i < input->shape().Rank(); i++) {
|
||||||
|
if (i != axis) {
|
||||||
|
t = t.AppendDim(input->shape()[i]);
|
||||||
|
} else {
|
||||||
|
dsize_t new_shape = input->shape()[i] + append->shape()[i];
|
||||||
|
|
||||||
|
t = t.AppendDim(new_shape);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::shared_ptr<Tensor> out;
|
||||||
|
|
||||||
|
if (input->type().IsNumeric()) {
|
||||||
|
RETURN_IF_NOT_OK(Tensor::CreateTensor(&out, TensorImpl::kFlexible, t, input->type()));
|
||||||
|
|
||||||
|
RETURN_IF_NOT_OK(out->Concatenate({0}, input));
|
||||||
|
RETURN_IF_NOT_OK(out->Concatenate({input->shape()[0]}, append));
|
||||||
|
*output = out;
|
||||||
|
} else {
|
||||||
|
std::vector<std::string> strings;
|
||||||
|
|
||||||
|
auto itr = input->begin<std::string_view>();
|
||||||
|
for (; itr != input->end<std::string_view>(); itr++) {
|
||||||
|
strings.emplace_back(*itr);
|
||||||
|
}
|
||||||
|
itr = append->begin<std::string_view>();
|
||||||
|
for (; itr != append->end<std::string_view>(); itr++) {
|
||||||
|
strings.emplace_back(*itr);
|
||||||
|
}
|
||||||
|
RETURN_IF_NOT_OK(Tensor::CreateTensor(&out, strings, t));
|
||||||
|
|
||||||
|
*output = out;
|
||||||
|
}
|
||||||
|
|
||||||
|
return Status::OK();
|
||||||
|
}
|
||||||
} // namespace dataset
|
} // namespace dataset
|
||||||
} // namespace mindspore
|
} // namespace mindspore
|
||||||
|
|
|
@ -23,6 +23,7 @@
|
||||||
#include "dataset/core/cv_tensor.h"
|
#include "dataset/core/cv_tensor.h"
|
||||||
#include "dataset/core/data_type.h"
|
#include "dataset/core/data_type.h"
|
||||||
#include "dataset/core/tensor.h"
|
#include "dataset/core/tensor.h"
|
||||||
|
#include "dataset/core/tensor_row.h"
|
||||||
|
|
||||||
namespace mindspore {
|
namespace mindspore {
|
||||||
namespace dataset {
|
namespace dataset {
|
||||||
|
@ -148,6 +149,14 @@ Status MaskHelper(const std::shared_ptr<Tensor> &input, const std::shared_ptr<Te
|
||||||
/// @return Status ok/error
|
/// @return Status ok/error
|
||||||
Status Mask(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const std::shared_ptr<Tensor> &value,
|
Status Mask(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const std::shared_ptr<Tensor> &value,
|
||||||
RelationalOp op);
|
RelationalOp op);
|
||||||
|
|
||||||
|
Status Concatenate(const TensorRow &input, TensorRow *output, int8_t axis, std::shared_ptr<Tensor> prepend,
|
||||||
|
std::shared_ptr<Tensor> append);
|
||||||
|
|
||||||
|
// helper for concat, always append to the input, and pass that to the output
|
||||||
|
Status ConcatenateHelper(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int8_t axis,
|
||||||
|
std::shared_ptr<Tensor> append);
|
||||||
|
|
||||||
} // namespace dataset
|
} // namespace dataset
|
||||||
} // namespace mindspore
|
} // namespace mindspore
|
||||||
|
|
||||||
|
|
|
@ -16,13 +16,13 @@
|
||||||
This module c_transforms provides common operations, including OneHotOp and TypeCast.
|
This module c_transforms provides common operations, including OneHotOp and TypeCast.
|
||||||
"""
|
"""
|
||||||
from enum import IntEnum
|
from enum import IntEnum
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
import mindspore.common.dtype as mstype
|
import mindspore.common.dtype as mstype
|
||||||
import mindspore._c_dataengine as cde
|
import mindspore._c_dataengine as cde
|
||||||
|
|
||||||
import numpy as np
|
from .validators import check_num_classes, check_de_type, check_fill_value, check_slice_op, check_mask_op, \
|
||||||
|
check_pad_end, check_concat_type
|
||||||
from .validators import check_num_classes, check_de_type, check_fill_value, check_slice_op, check_mask_op, check_pad_end
|
|
||||||
from ..core.datatypes import mstype_to_detype
|
from ..core.datatypes import mstype_to_detype
|
||||||
|
|
||||||
|
|
||||||
|
@ -187,3 +187,19 @@ class PadEnd(cde.PadEndOp):
|
||||||
if pad_value is not None:
|
if pad_value is not None:
|
||||||
pad_value = cde.Tensor(np.array(pad_value))
|
pad_value = cde.Tensor(np.array(pad_value))
|
||||||
super().__init__(cde.TensorShape(pad_shape), pad_value)
|
super().__init__(cde.TensorShape(pad_shape), pad_value)
|
||||||
|
|
||||||
|
|
||||||
|
class Concatenate(cde.ConcatenateOp):
|
||||||
|
"""
|
||||||
|
Tensor operation to prepend and append to a tensor.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
axis (int, optional): axis to concatenate the tensors along (Default=0).
|
||||||
|
prepend (np.array, optional): numpy array to be prepended to the already concatenated tensors (Default=None).
|
||||||
|
append (np.array, optional): numpy array to be appended to the already concatenated tensors (Default=None).
|
||||||
|
"""
|
||||||
|
|
||||||
|
@check_concat_type
|
||||||
|
def __init__(self, axis=0, prepend=None, append=None):
|
||||||
|
# add some validations here later
|
||||||
|
super().__init__(axis, prepend, append)
|
||||||
|
|
|
@ -15,7 +15,9 @@
|
||||||
"""Validators for TensorOps.
|
"""Validators for TensorOps.
|
||||||
"""
|
"""
|
||||||
from functools import wraps
|
from functools import wraps
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import mindspore._c_dataengine as cde
|
||||||
from mindspore._c_expression import typing
|
from mindspore._c_expression import typing
|
||||||
|
|
||||||
# POS_INT_MIN is used to limit values from starting from 0
|
# POS_INT_MIN is used to limit values from starting from 0
|
||||||
|
@ -230,10 +232,11 @@ def check_mask_op(method):
|
||||||
|
|
||||||
if operator is None:
|
if operator is None:
|
||||||
raise ValueError("operator is not provided.")
|
raise ValueError("operator is not provided.")
|
||||||
|
|
||||||
|
from .c_transforms import Relational
|
||||||
if constant is None:
|
if constant is None:
|
||||||
raise ValueError("constant is not provided.")
|
raise ValueError("constant is not provided.")
|
||||||
|
|
||||||
from .c_transforms import Relational
|
|
||||||
if not isinstance(operator, Relational):
|
if not isinstance(operator, Relational):
|
||||||
raise TypeError("operator is not a Relational operator enum.")
|
raise TypeError("operator is not a Relational operator enum.")
|
||||||
|
|
||||||
|
@ -282,3 +285,46 @@ def check_pad_end(method):
|
||||||
return method(self, **kwargs)
|
return method(self, **kwargs)
|
||||||
|
|
||||||
return new_method
|
return new_method
|
||||||
|
|
||||||
|
|
||||||
|
def check_concat_type(method):
|
||||||
|
"""Wrapper method to check the parameters of concatenation op."""
|
||||||
|
|
||||||
|
@wraps(method)
|
||||||
|
def new_method(self, *args, **kwargs):
|
||||||
|
axis, prepend, append = (list(args) + 3 * [None])[:3]
|
||||||
|
if "prepend" in kwargs:
|
||||||
|
prepend = kwargs.get("prepend")
|
||||||
|
if "append" in kwargs:
|
||||||
|
append = kwargs.get("append")
|
||||||
|
if "axis" in kwargs:
|
||||||
|
axis = kwargs.get("axis")
|
||||||
|
|
||||||
|
if not isinstance(axis, (type(None), int)):
|
||||||
|
raise TypeError("axis type is not valid, must be None or an integer.")
|
||||||
|
|
||||||
|
if isinstance(axis, type(None)):
|
||||||
|
axis = 0
|
||||||
|
|
||||||
|
if axis not in (None, 0, -1):
|
||||||
|
raise ValueError("only 1D concatenation supported.")
|
||||||
|
|
||||||
|
if not isinstance(prepend, (type(None), np.ndarray)):
|
||||||
|
raise ValueError("prepend type is not valid, must be None for no prepend tensor or a numpy array.")
|
||||||
|
|
||||||
|
if not isinstance(append, (type(None), np.ndarray)):
|
||||||
|
raise ValueError("append type is not valid, must be None for no append tensor or a numpy array.")
|
||||||
|
|
||||||
|
if isinstance(prepend, np.ndarray):
|
||||||
|
prepend = cde.Tensor(prepend)
|
||||||
|
|
||||||
|
if isinstance(append, np.ndarray):
|
||||||
|
append = cde.Tensor(append)
|
||||||
|
|
||||||
|
kwargs["axis"] = axis
|
||||||
|
kwargs["prepend"] = prepend
|
||||||
|
kwargs["append"] = append
|
||||||
|
|
||||||
|
return method(self, **kwargs)
|
||||||
|
|
||||||
|
return new_method
|
||||||
|
|
|
@ -1,83 +1,84 @@
|
||||||
include(GoogleTest)
|
include(GoogleTest)
|
||||||
|
|
||||||
SET(DE_UT_SRCS
|
SET(DE_UT_SRCS
|
||||||
common/common.cc
|
common/common.cc
|
||||||
common/cvop_common.cc
|
common/cvop_common.cc
|
||||||
batch_op_test.cc
|
batch_op_test.cc
|
||||||
bit_functions_test.cc
|
bit_functions_test.cc
|
||||||
storage_container_test.cc
|
storage_container_test.cc
|
||||||
treap_test.cc
|
treap_test.cc
|
||||||
interrupt_test.cc
|
interrupt_test.cc
|
||||||
image_folder_op_test.cc
|
image_folder_op_test.cc
|
||||||
buddy_test.cc
|
buddy_test.cc
|
||||||
arena_test.cc
|
arena_test.cc
|
||||||
btree_test.cc
|
btree_test.cc
|
||||||
center_crop_op_test.cc
|
center_crop_op_test.cc
|
||||||
channel_swap_test.cc
|
channel_swap_test.cc
|
||||||
circular_pool_test.cc
|
circular_pool_test.cc
|
||||||
client_config_test.cc
|
client_config_test.cc
|
||||||
connector_test.cc
|
connector_test.cc
|
||||||
datatype_test.cc
|
datatype_test.cc
|
||||||
decode_op_test.cc
|
decode_op_test.cc
|
||||||
execution_tree_test.cc
|
execution_tree_test.cc
|
||||||
global_context_test.cc
|
global_context_test.cc
|
||||||
main_test.cc
|
main_test.cc
|
||||||
map_op_test.cc
|
map_op_test.cc
|
||||||
mind_record_op_test.cc
|
mind_record_op_test.cc
|
||||||
memory_pool_test.cc
|
memory_pool_test.cc
|
||||||
normalize_op_test.cc
|
normalize_op_test.cc
|
||||||
one_hot_op_test.cc
|
one_hot_op_test.cc
|
||||||
pad_end_op_test.cc
|
pad_end_op_test.cc
|
||||||
path_test.cc
|
path_test.cc
|
||||||
project_op_test.cc
|
project_op_test.cc
|
||||||
queue_test.cc
|
queue_test.cc
|
||||||
random_crop_op_test.cc
|
random_crop_op_test.cc
|
||||||
random_crop_decode_resize_op_test.cc
|
random_crop_decode_resize_op_test.cc
|
||||||
random_crop_and_resize_op_test.cc
|
random_crop_and_resize_op_test.cc
|
||||||
random_color_adjust_op_test.cc
|
random_color_adjust_op_test.cc
|
||||||
random_horizontal_flip_op_test.cc
|
random_horizontal_flip_op_test.cc
|
||||||
random_resize_op_test.cc
|
random_resize_op_test.cc
|
||||||
random_rotation_op_test.cc
|
random_rotation_op_test.cc
|
||||||
random_vertical_flip_op_test.cc
|
random_vertical_flip_op_test.cc
|
||||||
rename_op_test.cc
|
rename_op_test.cc
|
||||||
repeat_op_test.cc
|
repeat_op_test.cc
|
||||||
skip_op_test.cc
|
skip_op_test.cc
|
||||||
rescale_op_test.cc
|
rescale_op_test.cc
|
||||||
resize_bilinear_op_test.cc
|
resize_bilinear_op_test.cc
|
||||||
resize_op_test.cc
|
resize_op_test.cc
|
||||||
shuffle_op_test.cc
|
shuffle_op_test.cc
|
||||||
stand_alone_samplers_test.cc
|
stand_alone_samplers_test.cc
|
||||||
status_test.cc
|
status_test.cc
|
||||||
storage_op_test.cc
|
storage_op_test.cc
|
||||||
task_manager_test.cc
|
task_manager_test.cc
|
||||||
tensor_test.cc
|
tensor_test.cc
|
||||||
tensor_string_test.cc
|
tensor_string_test.cc
|
||||||
tensorshape_test.cc
|
tensorshape_test.cc
|
||||||
tfReader_op_test.cc
|
tfReader_op_test.cc
|
||||||
to_float16_op_test.cc
|
to_float16_op_test.cc
|
||||||
type_cast_op_test.cc
|
type_cast_op_test.cc
|
||||||
zip_op_test.cc
|
zip_op_test.cc
|
||||||
random_resize_op_test.cc
|
random_resize_op_test.cc
|
||||||
subset_random_sampler_test.cc
|
subset_random_sampler_test.cc
|
||||||
weighted_random_sampler_test.cc
|
weighted_random_sampler_test.cc
|
||||||
mnist_op_test.cc
|
mnist_op_test.cc
|
||||||
manifest_op_test.cc
|
manifest_op_test.cc
|
||||||
voc_op_test.cc
|
voc_op_test.cc
|
||||||
cifar_op_test.cc
|
cifar_op_test.cc
|
||||||
celeba_op_test.cc
|
celeba_op_test.cc
|
||||||
take_op_test.cc
|
take_op_test.cc
|
||||||
clue_op_test.cc
|
clue_op_test.cc
|
||||||
text_file_op_test.cc
|
text_file_op_test.cc
|
||||||
filter_op_test.cc
|
filter_op_test.cc
|
||||||
concat_op_test.cc
|
concat_op_test.cc
|
||||||
jieba_tokenizer_op_test.cc
|
jieba_tokenizer_op_test.cc
|
||||||
tokenizer_op_test.cc
|
tokenizer_op_test.cc
|
||||||
gnn_graph_test.cc
|
gnn_graph_test.cc
|
||||||
coco_op_test.cc
|
coco_op_test.cc
|
||||||
fill_op_test.cc
|
fill_op_test.cc
|
||||||
mask_test.cc
|
mask_test.cc
|
||||||
trucate_pair_test.cc
|
trucate_pair_test.cc
|
||||||
)
|
concatenate_op_test.cc
|
||||||
|
)
|
||||||
|
|
||||||
add_executable(de_ut_tests ${DE_UT_SRCS})
|
add_executable(de_ut_tests ${DE_UT_SRCS})
|
||||||
|
|
||||||
|
@ -88,8 +89,8 @@ target_link_libraries(de_ut_tests PRIVATE _c_dataengine pybind11::embed ${GTEST_
|
||||||
gtest_discover_tests(de_ut_tests WORKING_DIRECTORY ${Project_DIR}/tests/dataset)
|
gtest_discover_tests(de_ut_tests WORKING_DIRECTORY ${Project_DIR}/tests/dataset)
|
||||||
|
|
||||||
install(TARGETS de_ut_tests
|
install(TARGETS de_ut_tests
|
||||||
RUNTIME DESTINATION test)
|
RUNTIME DESTINATION test)
|
||||||
|
|
||||||
# For internal testing only.
|
# For internal testing only.
|
||||||
install(DIRECTORY ${Project_DIR}/tests/dataset/data/
|
install(DIRECTORY ${Project_DIR}/tests/dataset/data/
|
||||||
DESTINATION test/data)
|
DESTINATION test/data)
|
||||||
|
|
|
@ -0,0 +1,66 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include "common/common.h"
|
||||||
|
#include "dataset/kernels/data/concatenate_op.h"
|
||||||
|
#include "utils/log_adapter.h"
|
||||||
|
|
||||||
|
using namespace mindspore::dataset;
|
||||||
|
using mindspore::LogStream;
|
||||||
|
using mindspore::ExceptionType::NoExceptionType;
|
||||||
|
using mindspore::MsLogLevel::INFO;
|
||||||
|
|
||||||
|
class MindDataTestConcatenateOp : public UT::Common {
|
||||||
|
protected:
|
||||||
|
MindDataTestConcatenateOp() {}
|
||||||
|
};
|
||||||
|
|
||||||
|
TEST_F(MindDataTestConcatenateOp, TestOp) {
|
||||||
|
MS_LOG(INFO) << "Doing MindDataTestConcatenate-TestOp.";
|
||||||
|
uint64_t labels[3] = {1, 1, 2};
|
||||||
|
TensorShape shape({3});
|
||||||
|
std::shared_ptr<Tensor> input =
|
||||||
|
std::make_shared<Tensor>(shape, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(labels));
|
||||||
|
|
||||||
|
uint64_t append_labels[3] = {4, 4, 4};
|
||||||
|
std::shared_ptr<Tensor> append =
|
||||||
|
std::make_shared<Tensor>(shape, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(append_labels));
|
||||||
|
|
||||||
|
std::shared_ptr<Tensor> output;
|
||||||
|
std::unique_ptr<ConcatenateOp> op(new ConcatenateOp(0, nullptr, append));
|
||||||
|
TensorRow in;
|
||||||
|
in.push_back(input);
|
||||||
|
TensorRow out_row;
|
||||||
|
Status s = op->Compute(in, &out_row);
|
||||||
|
uint64_t out[6] = {1, 1, 2, 4, 4, 4};
|
||||||
|
|
||||||
|
std::shared_ptr<Tensor> expected =
|
||||||
|
std::make_shared<Tensor>(TensorShape{6}, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(out));
|
||||||
|
output = out_row[0];
|
||||||
|
EXPECT_TRUE(s.IsOk());
|
||||||
|
ASSERT_TRUE(output->shape() == expected->shape());
|
||||||
|
ASSERT_TRUE(output->type() == expected->type());
|
||||||
|
MS_LOG(DEBUG) << *output << std::endl;
|
||||||
|
MS_LOG(DEBUG) << *expected << std::endl;
|
||||||
|
|
||||||
|
ASSERT_TRUE(*output == *expected);
|
||||||
|
|
||||||
|
// std::vector<TensorShape> inputs = {TensorShape({3})};
|
||||||
|
// std::vector<TensorShape> outputs = {};
|
||||||
|
// s = op->OutputShape(inputs, outputs);
|
||||||
|
// EXPECT_TRUE(s.IsOk());
|
||||||
|
// ASSERT_TRUE(outputs[0] == TensorShape{6});
|
||||||
|
// MS_LOG(INFO) << "MindDataTestConcatenateOp-TestOp end.";
|
||||||
|
}
|
|
@ -141,7 +141,6 @@ TEST_F(MindDataTestTensorDE, InsertTensor) {
|
||||||
|
|
||||||
std::shared_ptr<Tensor> t4;
|
std::shared_ptr<Tensor> t4;
|
||||||
Tensor::CreateTensor(&t4, z, TensorShape({2, 3}));
|
Tensor::CreateTensor(&t4, z, TensorShape({2, 3}));
|
||||||
|
|
||||||
ASSERT_EQ(*t == *t4, true);
|
ASSERT_EQ(*t == *t4, true);
|
||||||
|
|
||||||
std::shared_ptr<Tensor> t5;
|
std::shared_ptr<Tensor> t5;
|
||||||
|
@ -407,3 +406,30 @@ TEST_F(MindDataTestTensorDE, TensorSlice) {
|
||||||
t->Slice(&t2, std::vector<dsize_t>{0, 1, 2, 3, 4});
|
t->Slice(&t2, std::vector<dsize_t>{0, 1, 2, 3, 4});
|
||||||
ASSERT_EQ(*t2, *t);
|
ASSERT_EQ(*t2, *t);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST_F(MindDataTestTensorDE, TensorConcatenate) {
|
||||||
|
std::vector<uint32_t> values1 = {1, 2, 3, 0, 0, 0};
|
||||||
|
std::vector<uint32_t> values2 = {4, 5, 6};
|
||||||
|
std::vector<uint32_t> expected = {1, 2, 3, 4, 5, 6};
|
||||||
|
|
||||||
|
std::shared_ptr<Tensor> t1;
|
||||||
|
Tensor::CreateTensor(&t1, values1);
|
||||||
|
|
||||||
|
std::shared_ptr<Tensor> t2;
|
||||||
|
Tensor::CreateTensor(&t2, values2);
|
||||||
|
|
||||||
|
std::shared_ptr<Tensor> out;
|
||||||
|
Tensor::CreateTensor(&out, expected);
|
||||||
|
Status s = t1->Concatenate({3}, t2);
|
||||||
|
EXPECT_TRUE(s.IsOk());
|
||||||
|
|
||||||
|
auto i = out->begin<uint32_t>();
|
||||||
|
auto j = t1->begin<uint32_t>();
|
||||||
|
for (; i != out->end<uint32_t>(); i++, j++) {
|
||||||
|
ASSERT_TRUE(*i == *j);
|
||||||
|
}
|
||||||
|
|
||||||
|
// should fail if the concatenated vector is too large
|
||||||
|
s = t1->Concatenate({5}, t2);
|
||||||
|
EXPECT_FALSE(s.IsOk());
|
||||||
|
}
|
||||||
|
|
|
@ -0,0 +1,175 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
"""
|
||||||
|
Testing concatenate op
|
||||||
|
"""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.dataset as ds
|
||||||
|
import mindspore.dataset.transforms.c_transforms as data_trans
|
||||||
|
|
||||||
|
|
||||||
|
def test_concatenate_op_all():
|
||||||
|
def gen():
|
||||||
|
yield (np.array([5., 6., 7., 8.], dtype=np.float),)
|
||||||
|
|
||||||
|
prepend_tensor = np.array([1.4, 2., 3., 4., 4.5], dtype=np.float)
|
||||||
|
append_tensor = np.array([9., 10.3, 11., 12.], dtype=np.float)
|
||||||
|
data = ds.GeneratorDataset(gen, column_names=["col"])
|
||||||
|
concatenate_op = data_trans.Concatenate(0, prepend_tensor, append_tensor)
|
||||||
|
data = data.map(input_columns=["col"], operations=concatenate_op)
|
||||||
|
expected = np.array([1.4, 2., 3., 4., 4.5, 5., 6., 7., 8., 9., 10.3,
|
||||||
|
11., 12.])
|
||||||
|
for data_row in data:
|
||||||
|
np.testing.assert_array_equal(data_row[0], expected)
|
||||||
|
|
||||||
|
|
||||||
|
def test_concatenate_op_none():
|
||||||
|
def gen():
|
||||||
|
yield (np.array([5., 6., 7., 8.], dtype=np.float),)
|
||||||
|
|
||||||
|
data = ds.GeneratorDataset(gen, column_names=["col"])
|
||||||
|
concatenate_op = data_trans.Concatenate()
|
||||||
|
|
||||||
|
data = data.map(input_columns=["col"], operations=concatenate_op)
|
||||||
|
for data_row in data:
|
||||||
|
np.testing.assert_array_equal(data_row[0], np.array([5., 6., 7., 8.], dtype=np.float))
|
||||||
|
|
||||||
|
|
||||||
|
def test_concatenate_op_string():
|
||||||
|
def gen():
|
||||||
|
yield (np.array(["ss", "ad"], dtype='S'),)
|
||||||
|
|
||||||
|
prepend_tensor = np.array(["dw", "df"], dtype='S')
|
||||||
|
append_tensor = np.array(["dwsdf", "df"], dtype='S')
|
||||||
|
data = ds.GeneratorDataset(gen, column_names=["col"])
|
||||||
|
concatenate_op = data_trans.Concatenate(0, prepend_tensor, append_tensor)
|
||||||
|
|
||||||
|
data = data.map(input_columns=["col"], operations=concatenate_op)
|
||||||
|
expected = np.array(["dw", "df", "ss", "ad", "dwsdf", "df"], dtype='S')
|
||||||
|
for data_row in data:
|
||||||
|
np.testing.assert_array_equal(data_row[0], expected)
|
||||||
|
|
||||||
|
|
||||||
|
def test_concatenate_op_multi_input_string():
|
||||||
|
prepend_tensor = np.array(["dw", "df"], dtype='S')
|
||||||
|
append_tensor = np.array(["dwsdf", "df"], dtype='S')
|
||||||
|
|
||||||
|
data = ([["1", "2", "d"]], [["3", "4", "e"]])
|
||||||
|
data = ds.NumpySlicesDataset(data, column_names=["col1", "col2"])
|
||||||
|
|
||||||
|
concatenate_op = data_trans.Concatenate(0, prepend=prepend_tensor, append=append_tensor)
|
||||||
|
|
||||||
|
data = data.map(input_columns=["col1", "col2"], columns_order=["out1"], output_columns=["out1"],
|
||||||
|
operations=concatenate_op)
|
||||||
|
expected = np.array(["dw", "df", "1", "2", "d", "3", "4", "e", "dwsdf", "df"], dtype='S')
|
||||||
|
for data_row in data:
|
||||||
|
np.testing.assert_array_equal(data_row[0], expected)
|
||||||
|
|
||||||
|
|
||||||
|
def test_concatenate_op_multi_input_numeric():
|
||||||
|
prepend_tensor = np.array([3, 5])
|
||||||
|
|
||||||
|
data = ([[1, 2]], [[3, 4]])
|
||||||
|
data = ds.NumpySlicesDataset(data, column_names=["col1", "col2"])
|
||||||
|
|
||||||
|
concatenate_op = data_trans.Concatenate(0, prepend=prepend_tensor)
|
||||||
|
|
||||||
|
data = data.map(input_columns=["col1", "col2"], columns_order=["out1"], output_columns=["out1"],
|
||||||
|
operations=concatenate_op)
|
||||||
|
expected = np.array([3, 5, 1, 2, 3, 4])
|
||||||
|
for data_row in data:
|
||||||
|
np.testing.assert_array_equal(data_row[0], expected)
|
||||||
|
|
||||||
|
|
||||||
|
def test_concatenate_op_type_mismatch():
|
||||||
|
def gen():
|
||||||
|
yield (np.array([3, 4], dtype=np.float),)
|
||||||
|
|
||||||
|
prepend_tensor = np.array(["ss", "ad"], dtype='S')
|
||||||
|
data = ds.GeneratorDataset(gen, column_names=["col"])
|
||||||
|
concatenate_op = data_trans.Concatenate(0, prepend_tensor)
|
||||||
|
|
||||||
|
data = data.map(input_columns=["col"], operations=concatenate_op)
|
||||||
|
with pytest.raises(RuntimeError) as error_info:
|
||||||
|
for _ in data:
|
||||||
|
pass
|
||||||
|
assert "Tensor types do not match" in repr(error_info.value)
|
||||||
|
|
||||||
|
|
||||||
|
def test_concatenate_op_type_mismatch2():
|
||||||
|
def gen():
|
||||||
|
yield (np.array(["ss", "ad"], dtype='S'),)
|
||||||
|
|
||||||
|
prepend_tensor = np.array([3, 5], dtype=np.float)
|
||||||
|
data = ds.GeneratorDataset(gen, column_names=["col"])
|
||||||
|
concatenate_op = data_trans.Concatenate(0, prepend_tensor)
|
||||||
|
|
||||||
|
data = data.map(input_columns=["col"], operations=concatenate_op)
|
||||||
|
with pytest.raises(RuntimeError) as error_info:
|
||||||
|
for _ in data:
|
||||||
|
pass
|
||||||
|
assert "Tensor types do not match" in repr(error_info.value)
|
||||||
|
|
||||||
|
|
||||||
|
def test_concatenate_op_incorrect_dim():
|
||||||
|
def gen():
|
||||||
|
yield (np.array([["ss", "ad"], ["ss", "ad"]], dtype='S'),)
|
||||||
|
|
||||||
|
prepend_tensor = np.array([3, 5], dtype=np.float)
|
||||||
|
concatenate_op = data_trans.Concatenate(0, prepend_tensor)
|
||||||
|
data = ds.GeneratorDataset(gen, column_names=["col"])
|
||||||
|
|
||||||
|
data = data.map(input_columns=["col"], operations=concatenate_op)
|
||||||
|
with pytest.raises(RuntimeError) as error_info:
|
||||||
|
for _ in data:
|
||||||
|
pass
|
||||||
|
assert "Only 1D tensors supported" in repr(error_info.value)
|
||||||
|
|
||||||
|
|
||||||
|
def test_concatenate_op_wrong_axis():
|
||||||
|
with pytest.raises(ValueError) as error_info:
|
||||||
|
data_trans.Concatenate(2)
|
||||||
|
assert "only 1D concatenation supported." in repr(error_info.value)
|
||||||
|
|
||||||
|
|
||||||
|
def test_concatenate_op_incorrect_input_dim():
|
||||||
|
def gen():
|
||||||
|
yield (np.array(["ss", "ad"], dtype='S'),)
|
||||||
|
|
||||||
|
prepend_tensor = np.array([["ss", "ad"], ["ss", "ad"]], dtype='S')
|
||||||
|
data = ds.GeneratorDataset(gen, column_names=["col"])
|
||||||
|
concatenate_op = data_trans.Concatenate(0, prepend_tensor)
|
||||||
|
|
||||||
|
data = data.map(input_columns=["col"], operations=concatenate_op)
|
||||||
|
with pytest.raises(RuntimeError) as error_info:
|
||||||
|
for _ in data:
|
||||||
|
pass
|
||||||
|
assert "Only 1D tensors supported" in repr(error_info.value)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_concatenate_op_all()
|
||||||
|
test_concatenate_op_none()
|
||||||
|
test_concatenate_op_string()
|
||||||
|
test_concatenate_op_type_mismatch()
|
||||||
|
test_concatenate_op_type_mismatch2()
|
||||||
|
test_concatenate_op_incorrect_dim()
|
||||||
|
test_concatenate_op_incorrect_input_dim()
|
||||||
|
test_concatenate_op_multi_input_numeric()
|
||||||
|
test_concatenate_op_multi_input_string()
|
||||||
|
test_concatenate_op_wrong_axis()
|
Loading…
Reference in New Issue