!955 fix some python code format

Merge pull request !955 from panfengfeng/panff/fix_code_format
This commit is contained in:
mindspore-ci-bot 2020-05-07 17:00:06 +08:00 committed by Gitee
commit a5572f1517
1 changed files with 46 additions and 46 deletions

View File

@ -205,12 +205,12 @@ class Dataset:
@check_sync_wait
def sync_wait(self, condition_name, num_batch=1, callback=None):
'''
Add a blocking condition to the input Dataset
Add a blocking condition to the input Dataset.
Args:
num_batch (int): the number of batches without blocking at the start of each epoch
condition_name (str): The condition name that is used to toggle sending next row
callback (function): The callback funciton that will be invoked when sync_update is called
num_batch (int): the number of batches without blocking at the start of each epoch.
condition_name (str): The condition name that is used to toggle sending next row.
callback (function): The callback funciton that will be invoked when sync_update is called.
Raises:
RuntimeError: If condition name already exists.
@ -920,13 +920,13 @@ class Dataset:
def sync_update(self, condition_name, num_batch=None, data=None):
"""
Release a blocking condition and triger callback with given data
Release a blocking condition and triger callback with given data.
Args:
condition_name (str): The condition name that is used to toggle sending next row
num_batch (int or None): The number of batches(rows) that are released
When num_batch is None, it will default to the number specified by the sync_wait operator
data (dict or None): The data passed to the callback
condition_name (str): The condition name that is used to toggle sending next row.
num_batch (int or None): The number of batches(rows) that are released.
When num_batch is None, it will default to the number specified by the sync_wait operator.
data (dict or None): The data passed to the callback.
"""
notifiers_dict = self.get_sync_notifiers()
if condition_name not in notifiers_dict:
@ -948,7 +948,7 @@ class Dataset:
def get_repeat_count(self):
"""
Get the replication times in RepeatDataset else 1
Get the replication times in RepeatDataset else 1.
Return:
Number, the count of repeat.
@ -969,7 +969,7 @@ class Dataset:
raise NotImplementedError("Dataset {} has not supported api get_class_indexing yet.".format(type(self)))
def reset(self):
"""Reset the dataset for next epoch"""
"""Reset the dataset for next epoch."""
class SourceDataset(Dataset):
@ -1085,9 +1085,9 @@ class BatchDataset(DatasetOp):
Utility function to find the case where repeat is used before batch.
Args:
dataset (Dataset): dataset to be checked
dataset (Dataset): dataset to be checked.
Return:
True or False
True or False.
"""
if isinstance(dataset, RepeatDataset):
return True
@ -1102,8 +1102,8 @@ class BatchDataset(DatasetOp):
Utility function to notify batch size to sync_wait.
Args:
dataset (Dataset): dataset to be checked
batchsize (int): batch size to notify
dataset (Dataset): dataset to be checked.
batchsize (int): batch size to notify.
"""
if isinstance(dataset, SyncWaitDataset):
dataset.update_sync_batch_size(batch_size)
@ -1136,11 +1136,11 @@ class BatchInfo(CBatchInfo):
class BlockReleasePair:
"""
The blocking condition class used by SyncWaitDataset
The blocking condition class used by SyncWaitDataset.
Args:
init_release_rows (int): Number of lines to allow through the pipeline
callback (function): The callback funciton that will be called when release is called
init_release_rows (int): Number of lines to allow through the pipeline.
callback (function): The callback funciton that will be called when release is called.
"""
def __init__(self, init_release_rows, callback=None):
self.row_count = -init_release_rows
@ -1183,13 +1183,13 @@ class BlockReleasePair:
class SyncWaitDataset(DatasetOp):
"""
The result of adding a blocking condition to the input Dataset
The result of adding a blocking condition to the input Dataset.
Args:
input_dataset (Dataset): Input dataset to apply flow control
num_batch (int): the number of batches without blocking at the start of each epoch
condition_name (str): The condition name that is used to toggle sending next row
callback (function): The callback funciton that will be invoked when sync_update is called
input_dataset (Dataset): Input dataset to apply flow control.
num_batch (int): the number of batches without blocking at the start of each epoch.
condition_name (str): The condition name that is used to toggle sending next row.
callback (function): The callback funciton that will be invoked when sync_update is called.
Raises:
RuntimeError: If condition name already exists.
@ -1226,9 +1226,9 @@ class SyncWaitDataset(DatasetOp):
Utility function to find the case where sync_wait is used before batch.
Args:
dataset (Dataset): dataset to be checked
dataset (Dataset): dataset to be checked.
Return:
True or False
True or False.
"""
if isinstance(dataset, BatchDataset):
return True
@ -1289,7 +1289,7 @@ def _pyfunc_worker_exec(index, *args):
# PythonCallable wrapper for multiprocess pyfunc
class _PythonCallable:
"""
Internal python function wrapper for multiprocessing pyfunc
Internal python function wrapper for multiprocessing pyfunc.
"""
def __init__(self, py_callable, idx, pool=None):
# Original python callable from user.
@ -1467,7 +1467,7 @@ class FilterDataset(DatasetOp):
def get_dataset_size(self):
"""
Get the number of batches in an epoch.
the size cannot be determined before we run the pipeline
the size cannot be determined before we run the pipeline.
Return:
0
"""
@ -1759,7 +1759,7 @@ class StorageDataset(SourceDataset):
columns_list (list[str], optional): List of columns to be read (default=None, read all columns).
num_parallel_workers (int, optional): Number of parallel working threads (default=None).
deterministic_output (bool, optional): Whether the result of this dataset can be reproduced
or not (default=True). If True, performance might be affected.
or not (default=True). If True, performance might be affected.
prefetch_size (int, optional): Prefetch number of records ahead of the user's request (default=None).
Raises:
@ -1889,11 +1889,11 @@ def _select_sampler(num_samples, input_sampler, shuffle, num_shards, shard_id):
Create sampler based on user input.
Args:
num_samples (int): Number of samples
input_sampler (Iterable / Sampler): Sampler from user
shuffle (bool): Shuffle
num_shards (int): Number of shard for sharding
shard_id (int): Shard ID
num_samples (int): Number of samples.
input_sampler (Iterable / Sampler): Sampler from user.
shuffle (bool): Shuffle.
num_shards (int): Number of shard for sharding.
shard_id (int): Shard ID.
"""
if shuffle is None:
if input_sampler is not None:
@ -2265,7 +2265,7 @@ class MindDataset(SourceDataset):
def _iter_fn(dataset, num_samples):
"""
Generator function wrapper for iterable dataset
Generator function wrapper for iterable dataset.
"""
if num_samples is not None:
ds_iter = iter(dataset)
@ -2284,7 +2284,7 @@ def _iter_fn(dataset, num_samples):
def _generator_fn(generator, num_samples):
"""
Generator function wrapper for generator function dataset
Generator function wrapper for generator function dataset.
"""
if num_samples is not None:
gen_iter = generator()
@ -2302,7 +2302,7 @@ def _generator_fn(generator, num_samples):
def _py_sampler_fn(sampler, num_samples, dataset):
"""
Generator function wrapper for mappable dataset with python sampler
Generator function wrapper for mappable dataset with python sampler.
"""
if num_samples is not None:
sampler_iter = iter(sampler)
@ -2323,7 +2323,7 @@ def _py_sampler_fn(sampler, num_samples, dataset):
def _cpp_sampler_fn(sampler, dataset):
"""
Generator function wrapper for mappable dataset with cpp sampler
Generator function wrapper for mappable dataset with cpp sampler.
"""
indices = sampler.get_indices()
for i in indices:
@ -2334,7 +2334,7 @@ def _cpp_sampler_fn(sampler, dataset):
def _cpp_sampler_fn_mp(sampler, dataset, num_worker):
"""
Multiprocessing generator function wrapper for mappable dataset with cpp sampler
Multiprocessing generator function wrapper for mappable dataset with cpp sampler.
"""
indices = sampler.get_indices()
return _sampler_fn_mp(indices, dataset, num_worker)
@ -2342,7 +2342,7 @@ def _cpp_sampler_fn_mp(sampler, dataset, num_worker):
def _py_sampler_fn_mp(sampler, num_samples, dataset, num_worker):
"""
Multiprocessing generator function wrapper for mappable dataset with python sampler
Multiprocessing generator function wrapper for mappable dataset with python sampler.
"""
indices = _fetch_py_sampler_indices(sampler, num_samples)
return _sampler_fn_mp(indices, dataset, num_worker)
@ -2350,7 +2350,7 @@ def _py_sampler_fn_mp(sampler, num_samples, dataset, num_worker):
def _fetch_py_sampler_indices(sampler, num_samples):
"""
Indices fetcher for python sampler
Indices fetcher for python sampler.
"""
if num_samples is not None:
sampler_iter = iter(sampler)
@ -2367,7 +2367,7 @@ def _fetch_py_sampler_indices(sampler, num_samples):
def _fill_worker_indices(workers, indices, idx):
"""
Worker index queue filler, fill worker index queue in round robin order
Worker index queue filler, fill worker index queue in round robin order.
"""
num_worker = len(workers)
while idx < len(indices):
@ -2381,7 +2381,7 @@ def _fill_worker_indices(workers, indices, idx):
def _sampler_fn_mp(indices, dataset, num_worker):
"""
Multiprocessing generator function wrapper master process
Multiprocessing generator function wrapper master process.
"""
workers = []
# Event for end of epoch
@ -2423,7 +2423,7 @@ def _sampler_fn_mp(indices, dataset, num_worker):
def _generator_worker_loop(dataset, idx_queue, result_queue, eoe):
"""
Multiprocessing generator worker process loop
Multiprocessing generator worker process loop.
"""
while True:
# Fetch index, block
@ -2448,7 +2448,7 @@ def _generator_worker_loop(dataset, idx_queue, result_queue, eoe):
class _GeneratorWorker(multiprocessing.Process):
"""
Worker process for multiprocess Generator
Worker process for multiprocess Generator.
"""
def __init__(self, dataset, eoe):
self.idx_queue = multiprocessing.Queue(16)
@ -2932,7 +2932,7 @@ class ManifestDataset(SourceDataset):
def get_class_indexing(self):
"""
Get the class index
Get the class index.
Return:
Dict, A str-to-int mapping from label name to index.
@ -3500,7 +3500,7 @@ class VOCDataset(SourceDataset):
class CelebADataset(SourceDataset):
"""
A source dataset for reading and parsing CelebA dataset.Only support list_attr_celeba.txt currently
A source dataset for reading and parsing CelebA dataset.Only support list_attr_celeba.txt currently.
Note:
The generated dataset has two columns ['image', 'attr'].