forked from mindspore-Ecosystem/mindspore
!955 fix some python code format
Merge pull request !955 from panfengfeng/panff/fix_code_format
This commit is contained in:
commit
a5572f1517
|
@ -205,12 +205,12 @@ class Dataset:
|
|||
@check_sync_wait
|
||||
def sync_wait(self, condition_name, num_batch=1, callback=None):
|
||||
'''
|
||||
Add a blocking condition to the input Dataset
|
||||
Add a blocking condition to the input Dataset.
|
||||
|
||||
Args:
|
||||
num_batch (int): the number of batches without blocking at the start of each epoch
|
||||
condition_name (str): The condition name that is used to toggle sending next row
|
||||
callback (function): The callback funciton that will be invoked when sync_update is called
|
||||
num_batch (int): the number of batches without blocking at the start of each epoch.
|
||||
condition_name (str): The condition name that is used to toggle sending next row.
|
||||
callback (function): The callback funciton that will be invoked when sync_update is called.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If condition name already exists.
|
||||
|
@ -920,13 +920,13 @@ class Dataset:
|
|||
|
||||
def sync_update(self, condition_name, num_batch=None, data=None):
|
||||
"""
|
||||
Release a blocking condition and triger callback with given data
|
||||
Release a blocking condition and triger callback with given data.
|
||||
|
||||
Args:
|
||||
condition_name (str): The condition name that is used to toggle sending next row
|
||||
num_batch (int or None): The number of batches(rows) that are released
|
||||
When num_batch is None, it will default to the number specified by the sync_wait operator
|
||||
data (dict or None): The data passed to the callback
|
||||
condition_name (str): The condition name that is used to toggle sending next row.
|
||||
num_batch (int or None): The number of batches(rows) that are released.
|
||||
When num_batch is None, it will default to the number specified by the sync_wait operator.
|
||||
data (dict or None): The data passed to the callback.
|
||||
"""
|
||||
notifiers_dict = self.get_sync_notifiers()
|
||||
if condition_name not in notifiers_dict:
|
||||
|
@ -948,7 +948,7 @@ class Dataset:
|
|||
|
||||
def get_repeat_count(self):
|
||||
"""
|
||||
Get the replication times in RepeatDataset else 1
|
||||
Get the replication times in RepeatDataset else 1.
|
||||
|
||||
Return:
|
||||
Number, the count of repeat.
|
||||
|
@ -969,7 +969,7 @@ class Dataset:
|
|||
raise NotImplementedError("Dataset {} has not supported api get_class_indexing yet.".format(type(self)))
|
||||
|
||||
def reset(self):
|
||||
"""Reset the dataset for next epoch"""
|
||||
"""Reset the dataset for next epoch."""
|
||||
|
||||
|
||||
class SourceDataset(Dataset):
|
||||
|
@ -1085,9 +1085,9 @@ class BatchDataset(DatasetOp):
|
|||
Utility function to find the case where repeat is used before batch.
|
||||
|
||||
Args:
|
||||
dataset (Dataset): dataset to be checked
|
||||
dataset (Dataset): dataset to be checked.
|
||||
Return:
|
||||
True or False
|
||||
True or False.
|
||||
"""
|
||||
if isinstance(dataset, RepeatDataset):
|
||||
return True
|
||||
|
@ -1102,8 +1102,8 @@ class BatchDataset(DatasetOp):
|
|||
Utility function to notify batch size to sync_wait.
|
||||
|
||||
Args:
|
||||
dataset (Dataset): dataset to be checked
|
||||
batchsize (int): batch size to notify
|
||||
dataset (Dataset): dataset to be checked.
|
||||
batchsize (int): batch size to notify.
|
||||
"""
|
||||
if isinstance(dataset, SyncWaitDataset):
|
||||
dataset.update_sync_batch_size(batch_size)
|
||||
|
@ -1136,11 +1136,11 @@ class BatchInfo(CBatchInfo):
|
|||
|
||||
class BlockReleasePair:
|
||||
"""
|
||||
The blocking condition class used by SyncWaitDataset
|
||||
The blocking condition class used by SyncWaitDataset.
|
||||
|
||||
Args:
|
||||
init_release_rows (int): Number of lines to allow through the pipeline
|
||||
callback (function): The callback funciton that will be called when release is called
|
||||
init_release_rows (int): Number of lines to allow through the pipeline.
|
||||
callback (function): The callback funciton that will be called when release is called.
|
||||
"""
|
||||
def __init__(self, init_release_rows, callback=None):
|
||||
self.row_count = -init_release_rows
|
||||
|
@ -1183,13 +1183,13 @@ class BlockReleasePair:
|
|||
|
||||
class SyncWaitDataset(DatasetOp):
|
||||
"""
|
||||
The result of adding a blocking condition to the input Dataset
|
||||
The result of adding a blocking condition to the input Dataset.
|
||||
|
||||
Args:
|
||||
input_dataset (Dataset): Input dataset to apply flow control
|
||||
num_batch (int): the number of batches without blocking at the start of each epoch
|
||||
condition_name (str): The condition name that is used to toggle sending next row
|
||||
callback (function): The callback funciton that will be invoked when sync_update is called
|
||||
input_dataset (Dataset): Input dataset to apply flow control.
|
||||
num_batch (int): the number of batches without blocking at the start of each epoch.
|
||||
condition_name (str): The condition name that is used to toggle sending next row.
|
||||
callback (function): The callback funciton that will be invoked when sync_update is called.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If condition name already exists.
|
||||
|
@ -1226,9 +1226,9 @@ class SyncWaitDataset(DatasetOp):
|
|||
Utility function to find the case where sync_wait is used before batch.
|
||||
|
||||
Args:
|
||||
dataset (Dataset): dataset to be checked
|
||||
dataset (Dataset): dataset to be checked.
|
||||
Return:
|
||||
True or False
|
||||
True or False.
|
||||
"""
|
||||
if isinstance(dataset, BatchDataset):
|
||||
return True
|
||||
|
@ -1289,7 +1289,7 @@ def _pyfunc_worker_exec(index, *args):
|
|||
# PythonCallable wrapper for multiprocess pyfunc
|
||||
class _PythonCallable:
|
||||
"""
|
||||
Internal python function wrapper for multiprocessing pyfunc
|
||||
Internal python function wrapper for multiprocessing pyfunc.
|
||||
"""
|
||||
def __init__(self, py_callable, idx, pool=None):
|
||||
# Original python callable from user.
|
||||
|
@ -1467,7 +1467,7 @@ class FilterDataset(DatasetOp):
|
|||
def get_dataset_size(self):
|
||||
"""
|
||||
Get the number of batches in an epoch.
|
||||
the size cannot be determined before we run the pipeline
|
||||
the size cannot be determined before we run the pipeline.
|
||||
Return:
|
||||
0
|
||||
"""
|
||||
|
@ -1759,7 +1759,7 @@ class StorageDataset(SourceDataset):
|
|||
columns_list (list[str], optional): List of columns to be read (default=None, read all columns).
|
||||
num_parallel_workers (int, optional): Number of parallel working threads (default=None).
|
||||
deterministic_output (bool, optional): Whether the result of this dataset can be reproduced
|
||||
or not (default=True). If True, performance might be affected.
|
||||
or not (default=True). If True, performance might be affected.
|
||||
prefetch_size (int, optional): Prefetch number of records ahead of the user's request (default=None).
|
||||
|
||||
Raises:
|
||||
|
@ -1889,11 +1889,11 @@ def _select_sampler(num_samples, input_sampler, shuffle, num_shards, shard_id):
|
|||
Create sampler based on user input.
|
||||
|
||||
Args:
|
||||
num_samples (int): Number of samples
|
||||
input_sampler (Iterable / Sampler): Sampler from user
|
||||
shuffle (bool): Shuffle
|
||||
num_shards (int): Number of shard for sharding
|
||||
shard_id (int): Shard ID
|
||||
num_samples (int): Number of samples.
|
||||
input_sampler (Iterable / Sampler): Sampler from user.
|
||||
shuffle (bool): Shuffle.
|
||||
num_shards (int): Number of shard for sharding.
|
||||
shard_id (int): Shard ID.
|
||||
"""
|
||||
if shuffle is None:
|
||||
if input_sampler is not None:
|
||||
|
@ -2265,7 +2265,7 @@ class MindDataset(SourceDataset):
|
|||
|
||||
def _iter_fn(dataset, num_samples):
|
||||
"""
|
||||
Generator function wrapper for iterable dataset
|
||||
Generator function wrapper for iterable dataset.
|
||||
"""
|
||||
if num_samples is not None:
|
||||
ds_iter = iter(dataset)
|
||||
|
@ -2284,7 +2284,7 @@ def _iter_fn(dataset, num_samples):
|
|||
|
||||
def _generator_fn(generator, num_samples):
|
||||
"""
|
||||
Generator function wrapper for generator function dataset
|
||||
Generator function wrapper for generator function dataset.
|
||||
"""
|
||||
if num_samples is not None:
|
||||
gen_iter = generator()
|
||||
|
@ -2302,7 +2302,7 @@ def _generator_fn(generator, num_samples):
|
|||
|
||||
def _py_sampler_fn(sampler, num_samples, dataset):
|
||||
"""
|
||||
Generator function wrapper for mappable dataset with python sampler
|
||||
Generator function wrapper for mappable dataset with python sampler.
|
||||
"""
|
||||
if num_samples is not None:
|
||||
sampler_iter = iter(sampler)
|
||||
|
@ -2323,7 +2323,7 @@ def _py_sampler_fn(sampler, num_samples, dataset):
|
|||
|
||||
def _cpp_sampler_fn(sampler, dataset):
|
||||
"""
|
||||
Generator function wrapper for mappable dataset with cpp sampler
|
||||
Generator function wrapper for mappable dataset with cpp sampler.
|
||||
"""
|
||||
indices = sampler.get_indices()
|
||||
for i in indices:
|
||||
|
@ -2334,7 +2334,7 @@ def _cpp_sampler_fn(sampler, dataset):
|
|||
|
||||
def _cpp_sampler_fn_mp(sampler, dataset, num_worker):
|
||||
"""
|
||||
Multiprocessing generator function wrapper for mappable dataset with cpp sampler
|
||||
Multiprocessing generator function wrapper for mappable dataset with cpp sampler.
|
||||
"""
|
||||
indices = sampler.get_indices()
|
||||
return _sampler_fn_mp(indices, dataset, num_worker)
|
||||
|
@ -2342,7 +2342,7 @@ def _cpp_sampler_fn_mp(sampler, dataset, num_worker):
|
|||
|
||||
def _py_sampler_fn_mp(sampler, num_samples, dataset, num_worker):
|
||||
"""
|
||||
Multiprocessing generator function wrapper for mappable dataset with python sampler
|
||||
Multiprocessing generator function wrapper for mappable dataset with python sampler.
|
||||
"""
|
||||
indices = _fetch_py_sampler_indices(sampler, num_samples)
|
||||
return _sampler_fn_mp(indices, dataset, num_worker)
|
||||
|
@ -2350,7 +2350,7 @@ def _py_sampler_fn_mp(sampler, num_samples, dataset, num_worker):
|
|||
|
||||
def _fetch_py_sampler_indices(sampler, num_samples):
|
||||
"""
|
||||
Indices fetcher for python sampler
|
||||
Indices fetcher for python sampler.
|
||||
"""
|
||||
if num_samples is not None:
|
||||
sampler_iter = iter(sampler)
|
||||
|
@ -2367,7 +2367,7 @@ def _fetch_py_sampler_indices(sampler, num_samples):
|
|||
|
||||
def _fill_worker_indices(workers, indices, idx):
|
||||
"""
|
||||
Worker index queue filler, fill worker index queue in round robin order
|
||||
Worker index queue filler, fill worker index queue in round robin order.
|
||||
"""
|
||||
num_worker = len(workers)
|
||||
while idx < len(indices):
|
||||
|
@ -2381,7 +2381,7 @@ def _fill_worker_indices(workers, indices, idx):
|
|||
|
||||
def _sampler_fn_mp(indices, dataset, num_worker):
|
||||
"""
|
||||
Multiprocessing generator function wrapper master process
|
||||
Multiprocessing generator function wrapper master process.
|
||||
"""
|
||||
workers = []
|
||||
# Event for end of epoch
|
||||
|
@ -2423,7 +2423,7 @@ def _sampler_fn_mp(indices, dataset, num_worker):
|
|||
|
||||
def _generator_worker_loop(dataset, idx_queue, result_queue, eoe):
|
||||
"""
|
||||
Multiprocessing generator worker process loop
|
||||
Multiprocessing generator worker process loop.
|
||||
"""
|
||||
while True:
|
||||
# Fetch index, block
|
||||
|
@ -2448,7 +2448,7 @@ def _generator_worker_loop(dataset, idx_queue, result_queue, eoe):
|
|||
|
||||
class _GeneratorWorker(multiprocessing.Process):
|
||||
"""
|
||||
Worker process for multiprocess Generator
|
||||
Worker process for multiprocess Generator.
|
||||
"""
|
||||
def __init__(self, dataset, eoe):
|
||||
self.idx_queue = multiprocessing.Queue(16)
|
||||
|
@ -2932,7 +2932,7 @@ class ManifestDataset(SourceDataset):
|
|||
|
||||
def get_class_indexing(self):
|
||||
"""
|
||||
Get the class index
|
||||
Get the class index.
|
||||
|
||||
Return:
|
||||
Dict, A str-to-int mapping from label name to index.
|
||||
|
@ -3500,7 +3500,7 @@ class VOCDataset(SourceDataset):
|
|||
|
||||
class CelebADataset(SourceDataset):
|
||||
"""
|
||||
A source dataset for reading and parsing CelebA dataset.Only support list_attr_celeba.txt currently
|
||||
A source dataset for reading and parsing CelebA dataset.Only support list_attr_celeba.txt currently.
|
||||
|
||||
Note:
|
||||
The generated dataset has two columns ['image', 'attr'].
|
||||
|
|
Loading…
Reference in New Issue