Add graph attention networks model and test file

This commit is contained in:
zhangdengcheng 2020-05-14 08:12:54 +00:00
parent 8b98f921cc
commit 9fbc519ebb
3 changed files with 178 additions and 3 deletions

View File

@ -319,7 +319,8 @@ class AttentionHead(nn.Cell):
else:
ret = ret + input_feature
# activation
ret = self.activation(ret)
if self.activation is not None:
ret = self.activation(ret)
return ret
@ -336,6 +337,8 @@ class AttentionAggregator(nn.Cell):
coef_drop_ratio (float): Coefficient dropout ratio, default 0.0.
activation (Cell): The output activation function, default nn.ELU().
residual (bool): Whether to use residual connection, default False.
output_transform (str['concat', 'sum']): output transform for a layer,
default 'concat'
Inputs:
- **input_feature** (Tensor) - Tensor of shape : (batch_size, num_nodes, feature_dim).
@ -356,7 +359,8 @@ class AttentionAggregator(nn.Cell):
in_drop=0.0,
coef_drop=0.0,
activation=nn.ELU(),
residual=False):
residual=False,
output_transform='concat'):
super(AttentionAggregator, self).__init__()
self.num_heads = num_heads
self.attns = []
@ -368,9 +372,15 @@ class AttentionAggregator(nn.Cell):
activation=activation,
residual=residual))
self.attns = nn.layer.CellList(self.attns)
if output_transform == 'concat':
self.out_trans = P.Concat(-1)
elif output_transform == 'sum':
self.out_trans = P.AddN()
else:
raise ValueError
def construct(self, input_data, bias_mat):
res = ()
for i in range(self.num_heads):
res += (self.attns[i](input_data, bias_mat),)
return P.Concat(-1)(res)
return self.out_trans(res)

118
tests/st/gnn/gat.py Normal file
View File

@ -0,0 +1,118 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Graph Attention Networks."""
import mindspore.nn as nn
from mindspore._checkparam import check_bool, check_int_positive
from aggregator import AttentionAggregator
class GAT(nn.Cell):
"""
Graph Attention Network
Args:
ftr_dims (int): Initial feature dimensions.
num_class (int): Num of class to identify.
num_nodes (int): Num of nodes in this graph.
hidden_units (list[int]): Num of hidden units at each layer.
num_heads (list[int]): Num of heads at each layer.
attn_drop (float): Drop out ratio of attention coefficient,
default 0.0.
ftr_drop (float): Drop out ratio of feature, default 0.0.
activation (Cell): Activation Function for output layer, default
nn.Elu().
residual (bool): Whether to use residual connection between
intermediate layers, default False.
Examples:
>>> ft_sizes = 1433
>>> num_class = 7
>>> num_nodes = 2708
>>> hid_units = [8]
>>> n_heads = [8, 1]
>>> activation = nn.ELU()
>>> residual = False
>>> input_data = Tensor(
np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
>>> biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
>>> net = GAT(ft_sizes,
num_class,
num_nodes,
hidden_units=hid_units,
num_heads=n_heads,
attn_drop=0.6,
ftr_drop=0.6,
activation=activation,
residual=residual)
>>> output = net(input_data, biases)
"""
def __init__(self,
ftr_dims,
num_class,
num_nodes,
hidden_units,
num_heads,
attn_drop=0.0,
ftr_drop=0.0,
activation=nn.ELU(),
residual=False):
super(GAT, self).__init__()
self.ftr_dims = check_int_positive(ftr_dims)
self.num_class = check_int_positive(num_class)
self.num_nodes = check_int_positive(num_nodes)
self.hidden_units = hidden_units
self.num_heads = num_heads
self.attn_drop = attn_drop
self.ftr_drop = ftr_drop
self.activation = activation
self.residual = check_bool(residual)
self.layers = []
# first layer
self.layers.append(AttentionAggregator(
self.ftr_dims,
self.hidden_units[0],
self.num_heads[0],
self.ftr_drop,
self.attn_drop,
self.activation,
residual=False))
# intermediate layer
for i in range(1, len(self.hidden_units)):
self.layers.append(AttentionAggregator(
self.hidden_units[i-1]*self.num_heads[i-1],
self.hidden_units[i],
self.num_heads[i],
self.ftr_drop,
self.attn_drop,
self.activation,
residual=self.residual))
# output layer
self.layers.append(AttentionAggregator(
self.hidden_units[-1]*self.num_heads[-2],
self.num_class,
self.num_heads[-1],
self.ftr_drop,
self.attn_drop,
activation=None,
residual=False,
output_transform='sum'))
self.layers = nn.layer.CellList(self.layers)
def construct(self, input_data, bias_mat):
for cell in self.layers:
input_data = cell(input_data, bias_mat)
return input_data/self.num_heads[-1]

View File

@ -0,0 +1,47 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test gat model."""
import numpy as np
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.common.api import _executor
from gat import GAT
context.set_context(mode=context.GRAPH_MODE)
def test_GAT():
ft_sizes = 1433
num_class = 7
num_nodes = 2708
hid_units = [8]
n_heads = [8, 1]
activation = nn.ELU()
residual = False
input_data = Tensor(
np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
net = GAT(ft_sizes,
num_class,
num_nodes,
hidden_units=hid_units,
num_heads=n_heads,
attn_drop=0.6,
ftr_drop=0.6,
activation=activation,
residual=residual)
_executor.compile(net, input_data, biases)