forked from mindspore-Ecosystem/mindspore
Add graph attention networks model and test file
This commit is contained in:
parent
8b98f921cc
commit
9fbc519ebb
|
@ -319,7 +319,8 @@ class AttentionHead(nn.Cell):
|
|||
else:
|
||||
ret = ret + input_feature
|
||||
# activation
|
||||
ret = self.activation(ret)
|
||||
if self.activation is not None:
|
||||
ret = self.activation(ret)
|
||||
return ret
|
||||
|
||||
|
||||
|
@ -336,6 +337,8 @@ class AttentionAggregator(nn.Cell):
|
|||
coef_drop_ratio (float): Coefficient dropout ratio, default 0.0.
|
||||
activation (Cell): The output activation function, default nn.ELU().
|
||||
residual (bool): Whether to use residual connection, default False.
|
||||
output_transform (str['concat', 'sum']): output transform for a layer,
|
||||
default 'concat'
|
||||
|
||||
Inputs:
|
||||
- **input_feature** (Tensor) - Tensor of shape : (batch_size, num_nodes, feature_dim).
|
||||
|
@ -356,7 +359,8 @@ class AttentionAggregator(nn.Cell):
|
|||
in_drop=0.0,
|
||||
coef_drop=0.0,
|
||||
activation=nn.ELU(),
|
||||
residual=False):
|
||||
residual=False,
|
||||
output_transform='concat'):
|
||||
super(AttentionAggregator, self).__init__()
|
||||
self.num_heads = num_heads
|
||||
self.attns = []
|
||||
|
@ -368,9 +372,15 @@ class AttentionAggregator(nn.Cell):
|
|||
activation=activation,
|
||||
residual=residual))
|
||||
self.attns = nn.layer.CellList(self.attns)
|
||||
if output_transform == 'concat':
|
||||
self.out_trans = P.Concat(-1)
|
||||
elif output_transform == 'sum':
|
||||
self.out_trans = P.AddN()
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
def construct(self, input_data, bias_mat):
|
||||
res = ()
|
||||
for i in range(self.num_heads):
|
||||
res += (self.attns[i](input_data, bias_mat),)
|
||||
return P.Concat(-1)(res)
|
||||
return self.out_trans(res)
|
||||
|
|
|
@ -0,0 +1,118 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Graph Attention Networks."""
|
||||
import mindspore.nn as nn
|
||||
from mindspore._checkparam import check_bool, check_int_positive
|
||||
|
||||
from aggregator import AttentionAggregator
|
||||
|
||||
|
||||
class GAT(nn.Cell):
|
||||
"""
|
||||
Graph Attention Network
|
||||
|
||||
Args:
|
||||
ftr_dims (int): Initial feature dimensions.
|
||||
num_class (int): Num of class to identify.
|
||||
num_nodes (int): Num of nodes in this graph.
|
||||
hidden_units (list[int]): Num of hidden units at each layer.
|
||||
num_heads (list[int]): Num of heads at each layer.
|
||||
attn_drop (float): Drop out ratio of attention coefficient,
|
||||
default 0.0.
|
||||
ftr_drop (float): Drop out ratio of feature, default 0.0.
|
||||
activation (Cell): Activation Function for output layer, default
|
||||
nn.Elu().
|
||||
residual (bool): Whether to use residual connection between
|
||||
intermediate layers, default False.
|
||||
|
||||
Examples:
|
||||
>>> ft_sizes = 1433
|
||||
>>> num_class = 7
|
||||
>>> num_nodes = 2708
|
||||
>>> hid_units = [8]
|
||||
>>> n_heads = [8, 1]
|
||||
>>> activation = nn.ELU()
|
||||
>>> residual = False
|
||||
>>> input_data = Tensor(
|
||||
np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
|
||||
>>> biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
|
||||
>>> net = GAT(ft_sizes,
|
||||
num_class,
|
||||
num_nodes,
|
||||
hidden_units=hid_units,
|
||||
num_heads=n_heads,
|
||||
attn_drop=0.6,
|
||||
ftr_drop=0.6,
|
||||
activation=activation,
|
||||
residual=residual)
|
||||
>>> output = net(input_data, biases)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
ftr_dims,
|
||||
num_class,
|
||||
num_nodes,
|
||||
hidden_units,
|
||||
num_heads,
|
||||
attn_drop=0.0,
|
||||
ftr_drop=0.0,
|
||||
activation=nn.ELU(),
|
||||
residual=False):
|
||||
super(GAT, self).__init__()
|
||||
self.ftr_dims = check_int_positive(ftr_dims)
|
||||
self.num_class = check_int_positive(num_class)
|
||||
self.num_nodes = check_int_positive(num_nodes)
|
||||
self.hidden_units = hidden_units
|
||||
self.num_heads = num_heads
|
||||
self.attn_drop = attn_drop
|
||||
self.ftr_drop = ftr_drop
|
||||
self.activation = activation
|
||||
self.residual = check_bool(residual)
|
||||
self.layers = []
|
||||
# first layer
|
||||
self.layers.append(AttentionAggregator(
|
||||
self.ftr_dims,
|
||||
self.hidden_units[0],
|
||||
self.num_heads[0],
|
||||
self.ftr_drop,
|
||||
self.attn_drop,
|
||||
self.activation,
|
||||
residual=False))
|
||||
# intermediate layer
|
||||
for i in range(1, len(self.hidden_units)):
|
||||
self.layers.append(AttentionAggregator(
|
||||
self.hidden_units[i-1]*self.num_heads[i-1],
|
||||
self.hidden_units[i],
|
||||
self.num_heads[i],
|
||||
self.ftr_drop,
|
||||
self.attn_drop,
|
||||
self.activation,
|
||||
residual=self.residual))
|
||||
# output layer
|
||||
self.layers.append(AttentionAggregator(
|
||||
self.hidden_units[-1]*self.num_heads[-2],
|
||||
self.num_class,
|
||||
self.num_heads[-1],
|
||||
self.ftr_drop,
|
||||
self.attn_drop,
|
||||
activation=None,
|
||||
residual=False,
|
||||
output_transform='sum'))
|
||||
self.layers = nn.layer.CellList(self.layers)
|
||||
|
||||
def construct(self, input_data, bias_mat):
|
||||
for cell in self.layers:
|
||||
input_data = cell(input_data, bias_mat)
|
||||
return input_data/self.num_heads[-1]
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test gat model."""
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import _executor
|
||||
from gat import GAT
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
def test_GAT():
|
||||
ft_sizes = 1433
|
||||
num_class = 7
|
||||
num_nodes = 2708
|
||||
hid_units = [8]
|
||||
n_heads = [8, 1]
|
||||
activation = nn.ELU()
|
||||
residual = False
|
||||
input_data = Tensor(
|
||||
np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
|
||||
biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
|
||||
net = GAT(ft_sizes,
|
||||
num_class,
|
||||
num_nodes,
|
||||
hidden_units=hid_units,
|
||||
num_heads=n_heads,
|
||||
attn_drop=0.6,
|
||||
ftr_drop=0.6,
|
||||
activation=activation,
|
||||
residual=residual)
|
||||
_executor.compile(net, input_data, biases)
|
Loading…
Reference in New Issue