forked from mindspore-Ecosystem/mindspore
!997 support vm for log1p
Merge pull request !997 from jiangjinsheng/log1p
This commit is contained in:
commit
98112d1a64
|
@ -331,6 +331,19 @@ def get_bprop_log(self):
|
|||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Log1p)
|
||||
def get_bprop_log1p(self):
|
||||
"""Grad definition for `Log1p` operation."""
|
||||
reciprocal = P.Reciprocal()
|
||||
|
||||
def bprop(x, out, dout):
|
||||
x_1p = x + 1
|
||||
g = reciprocal(x_1p)
|
||||
dx = g * dout
|
||||
return dx, 0
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Erf)
|
||||
def get_bprop_erf(self):
|
||||
"""Grad definition for `Erf` operation."""
|
||||
|
|
|
@ -159,3 +159,4 @@ from .ones_like import _ones_like_tbe
|
|||
from .batch_to_space import _batch_to_space_tbe
|
||||
from .space_to_batch import _space_to_batch_tbe
|
||||
from .floor import _floor_tbe
|
||||
from .log1p import _log1p_tbe
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Log1p op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
log1p_op_info = TBERegOp("Log1p") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("log1p.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("log1p") \
|
||||
.partial_flag(True) \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(log1p_op_info)
|
||||
def _log1p_tbe():
|
||||
"""Log1p TBE register"""
|
||||
return
|
|
@ -40,7 +40,7 @@ from .inner_ops import ScalarCast
|
|||
from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul,
|
||||
ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd,
|
||||
Cos, Div, Equal, EqualCount, Exp, Erf, Floor, FloorDiv, FloorMod, Acosh,
|
||||
Greater, GreaterEqual, Less, LessEqual, Log, LogicalAnd,
|
||||
Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd,
|
||||
LogicalNot, LogicalOr, MatMul, Maximum,
|
||||
Minimum, Mul, Neg, NMSWithMask, NotEqual,
|
||||
NPUAllocFloatStatus, NPUClearFloatStatus,
|
||||
|
|
|
@ -1007,6 +1007,35 @@ class Log(PrimitiveWithInfer):
|
|||
return x
|
||||
|
||||
|
||||
class Log1p(PrimitiveWithInfer):
|
||||
"""
|
||||
Returns the natural logarithm of one plus the input tensor element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape as the `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
|
||||
>>> log1p = P.Log1p()
|
||||
>>> log1p(input_x)
|
||||
[0.6931472, 1.0986123, 1.609438]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
||||
|
||||
def infer_shape(self, x):
|
||||
return x
|
||||
|
||||
def infer_dtype(self, x):
|
||||
validator.check_subclass("x", x, mstype.tensor, self.name)
|
||||
return x
|
||||
|
||||
|
||||
class Erf(PrimitiveWithInfer):
|
||||
r"""
|
||||
Computes the Gauss error function of `input_x` element-wise.
|
||||
|
|
|
@ -359,6 +359,14 @@ class FloorNet(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.floor(x)
|
||||
|
||||
class Log1pNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Log1pNet, self).__init__()
|
||||
self.log1p = P.Log1p()
|
||||
|
||||
def construct(self, x):
|
||||
return self.log1p(x)
|
||||
|
||||
|
||||
test_case_math_ops = [
|
||||
('MatMulGrad', {
|
||||
|
@ -405,6 +413,11 @@ test_case_math_ops = [
|
|||
'desc_inputs': [Tensor(np.array([[1., 0., -2.]], np.float32))],
|
||||
'desc_bprop': [Tensor(np.array([[1., 0., -2.]], np.float32))],
|
||||
'skip': ['backward']}),
|
||||
('Log1p', {
|
||||
'block': Log1pNet(),
|
||||
'desc_inputs': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
|
||||
'desc_bprop': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
|
||||
'skip': ['backward']}),
|
||||
]
|
||||
|
||||
test_case_lists = [test_case_math_ops]
|
||||
|
|
Loading…
Reference in New Issue