!1178 Complete vm ops for ROIAlign and ROIAlignGrad

Merge pull request !1178 from zhouneng/add_vm_support_roialign
This commit is contained in:
mindspore-ci-bot 2020-05-16 11:15:13 +08:00 committed by Gitee
commit 92d196f054
5 changed files with 99 additions and 1 deletions

View File

@ -82,7 +82,9 @@ static std::map<string, string> tbe_func_adapter_map = {
{"batch_to_space", "batch_to_space_d"},
{"resize_bilinear", "resize_bilinear_v2_d"},
{"resize_bilinear_grad", "resize_bilinear_v2_grad"},
{"adam", "apply_adam_d"}};
{"adam", "apply_adam_d"},
{"r_oi_align", "roi_align"},
{"r_oi_align_grad", "roi_align_grad"}};
void TbeAdapter::NormalizeFuncName(std::string *func_name) {
if (func_name == nullptr) {

View File

@ -169,3 +169,5 @@ from .log1p import _log1p_tbe
from .resize_bilinear import _resize_bilinear_tbe
from .resize_bilinear_grad import _resize_bilinear_grad_tbe
from .flatten import _flatten_tbe
from .roi_align import _roi_align_tbe
from .roi_align_grad import _roi_align_grad_tbe

View File

@ -0,0 +1,43 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ROIAlign op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
roi_align_op_info = TBERegOp("ROIAlign") \
.fusion_type("OPAQUE") \
.async_flag(False) \
.binfile_name("roi_align.so") \
.compute_cost(10) \
.kernel_name("roi_align") \
.partial_flag(True) \
.attr("spatial_scale", "required", "float", "all") \
.attr("pooled_height", "required", "int", "all") \
.attr("pooled_width", "required", "int", "all") \
.attr("sample_num", "optional", "int", "all", "2") \
.attr("roi_end_mode", "optional", "0,1", "1") \
.input(0, "features", False, "required", "all") \
.input(1, "rois", False, "required", "all") \
.input(2, "rois_n", False, "optional", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.F16_5HD, DataType.F16_Default, DataType.I32_Default, DataType.F16_5HD) \
.dtype_format(DataType.F32_5HD, DataType.F32_Default, DataType.I32_Default, DataType.F32_5HD) \
.get_op_info()
@op_info_register(roi_align_op_info)
def _roi_align_tbe():
"""ROIAlign TBE register"""
return

View File

@ -0,0 +1,42 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ROIAlignGrad op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
roi_align_grad_op_info = TBERegOp("ROIAlignGrad") \
.fusion_type("OPAQUE") \
.async_flag(False) \
.binfile_name("roi_align_grad.so") \
.compute_cost(10) \
.kernel_name("roi_align_grad") \
.partial_flag(True) \
.attr("xdiff_shape", "required", "listInt", "all") \
.attr("pooled_width", "required", "int", "all") \
.attr("pooled_height", "required", "int", "all") \
.attr("spatial_scale", "required", "float", "all") \
.attr("sample_num", "optional", "int", "all") \
.input(0, "ydiff", False, "required", "all") \
.input(1, "rois", False, "required", "all") \
.input(2, "rois_n", False, "optional", "all") \
.output(0, "xdiff", False, "required", "all") \
.dtype_format(DataType.F32_5HD, DataType.F32_Default, DataType.I32_Default, DataType.F32_5HD) \
.get_op_info()
@op_info_register(roi_align_grad_op_info)
def _roi_align_grad_tbe():
"""ROIAlignGrad TBE register"""
return

View File

@ -942,6 +942,15 @@ test_case_nn_ops = [
'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32), Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
'skip': ['backward']}),
('ROIAlign', {
'block': P.ROIAlign(7, 7, 0.03125, 2),
'desc_inputs': [[2, 256, 192, 320], [1024, 5]],
'desc_bprop': [[7,7]]}),
('ROIAlignGrad', {
'block': G.ROIAlignGrad((1, 1, 1, 1), 2, 2, 0.5, 2),
'desc_inputs': [[1, 1, 2, 2], [1, 5]],
'desc_bprop': [[1, 1, 2, 2]],
'skip': ['backward']}),
]
test_case_array_ops = [