forked from mindspore-Ecosystem/mindspore
!1411 pylint warning clean
Merge pull request !1411 from liubuyu/master
This commit is contained in:
commit
929ef67bfc
|
@ -21,7 +21,7 @@ from mindspore.common import ms_function
|
|||
from mindspore.common.tensor import Tensor
|
||||
|
||||
|
||||
def setup_module(module):
|
||||
def setup_module():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
|
@ -33,7 +33,7 @@ c5 = Tensor([14], mstype.int32)
|
|||
|
||||
|
||||
@ms_function
|
||||
def simple_if(x, y, z):
|
||||
def simple_if(x, y):
|
||||
if x < y:
|
||||
x = x + 1
|
||||
else:
|
||||
|
@ -43,7 +43,7 @@ def simple_if(x, y, z):
|
|||
|
||||
|
||||
@ms_function
|
||||
def if_by_if(x, y, z):
|
||||
def if_by_if(x, y):
|
||||
if x < y:
|
||||
x = x + 1
|
||||
if y > x:
|
||||
|
@ -66,7 +66,7 @@ def if_in_if(x, y, z):
|
|||
|
||||
|
||||
@ms_function
|
||||
def simple_while(x, y, z):
|
||||
def simple_while(x, y):
|
||||
y = y + 4
|
||||
while x < y:
|
||||
x = x + 1
|
||||
|
@ -137,13 +137,13 @@ def while_in_while_in_while(x, y, z):
|
|||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_simple_if():
|
||||
output = simple_if(c1, c2, c3)
|
||||
output = simple_if(c1, c2)
|
||||
expect = Tensor([6], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
||||
def test_if_by_if():
|
||||
output = if_by_if(c1, c2, c3)
|
||||
output = if_by_if(c1, c2)
|
||||
expect = Tensor([8], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
@ -163,7 +163,7 @@ def test_if_in_if():
|
|||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_simple_while():
|
||||
output = simple_while(c1, c2, c3)
|
||||
output = simple_while(c1, c2)
|
||||
expect = Tensor([21], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
|
|
@ -18,7 +18,7 @@ from mindspore.common import dtype as mstype
|
|||
|
||||
|
||||
@ms_function
|
||||
def t1_while(x, y, z):
|
||||
def t1_while(x, y):
|
||||
y = y + 4
|
||||
while x < y:
|
||||
x = x + 1
|
||||
|
@ -30,9 +30,8 @@ def test_net():
|
|||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
c1 = Tensor([2], mstype.int32)
|
||||
c2 = Tensor([14], mstype.int32)
|
||||
c3 = Tensor([1], mstype.int32)
|
||||
expect = Tensor([21], mstype.int32)
|
||||
ret = t1_while(c1, c2, c3)
|
||||
ret = t1_while(c1, c2)
|
||||
assert ret == expect
|
||||
|
||||
|
||||
|
|
|
@ -19,8 +19,8 @@ curr_path = os.path.abspath(os.curdir)
|
|||
file_memreuse = curr_path + "/mem_reuse_check/memreuse.ir"
|
||||
file_normal = curr_path + "/mem_reuse_check/normal_mem.ir"
|
||||
checker = os.path.exists(file_memreuse)
|
||||
assert checker == True
|
||||
assert checker, True
|
||||
checker = os.path.exists(file_normal)
|
||||
assert checker == True
|
||||
assert checker, True
|
||||
checker = filecmp.cmp(file_memreuse, file_normal)
|
||||
assert checker == True
|
||||
assert checker, True
|
||||
|
|
|
@ -99,8 +99,7 @@ class ResidualBlock(nn.Cell):
|
|||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
stride=1,
|
||||
down_sample=False):
|
||||
stride=1):
|
||||
super(ResidualBlock, self).__init__()
|
||||
|
||||
out_chls = out_channels // self.expansion
|
||||
|
@ -188,7 +187,7 @@ class ResidualBlockWithDown(nn.Cell):
|
|||
|
||||
class MakeLayer0(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, in_channels, out_channels, stride):
|
||||
def __init__(self, block, in_channels, out_channels, stride):
|
||||
super(MakeLayer0, self).__init__()
|
||||
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True)
|
||||
self.b = block(out_channels, out_channels, stride=stride)
|
||||
|
@ -204,7 +203,7 @@ class MakeLayer0(nn.Cell):
|
|||
|
||||
class MakeLayer1(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, in_channels, out_channels, stride):
|
||||
def __init__(self, block, in_channels, out_channels, stride):
|
||||
super(MakeLayer1, self).__init__()
|
||||
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
|
||||
self.b = block(out_channels, out_channels, stride=1)
|
||||
|
@ -222,7 +221,7 @@ class MakeLayer1(nn.Cell):
|
|||
|
||||
class MakeLayer2(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, in_channels, out_channels, stride):
|
||||
def __init__(self, block, in_channels, out_channels, stride):
|
||||
super(MakeLayer2, self).__init__()
|
||||
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
|
||||
self.b = block(out_channels, out_channels, stride=1)
|
||||
|
@ -244,7 +243,7 @@ class MakeLayer2(nn.Cell):
|
|||
|
||||
class MakeLayer3(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, in_channels, out_channels, stride):
|
||||
def __init__(self, block, in_channels, out_channels, stride):
|
||||
super(MakeLayer3, self).__init__()
|
||||
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
|
||||
self.b = block(out_channels, out_channels, stride=1)
|
||||
|
@ -260,7 +259,7 @@ class MakeLayer3(nn.Cell):
|
|||
|
||||
class ResNet(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, num_classes=100, batch_size=32):
|
||||
def __init__(self, block, num_classes=100, batch_size=32):
|
||||
super(ResNet, self).__init__()
|
||||
self.batch_size = batch_size
|
||||
self.num_classes = num_classes
|
||||
|
@ -271,10 +270,10 @@ class ResNet(nn.Cell):
|
|||
self.relu = P.ReLU()
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
|
||||
|
||||
self.layer1 = MakeLayer0(block, layer_num[0], in_channels=64, out_channels=256, stride=1)
|
||||
self.layer2 = MakeLayer1(block, layer_num[1], in_channels=256, out_channels=512, stride=2)
|
||||
self.layer3 = MakeLayer2(block, layer_num[2], in_channels=512, out_channels=1024, stride=2)
|
||||
self.layer4 = MakeLayer3(block, layer_num[3], in_channels=1024, out_channels=2048, stride=2)
|
||||
self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1)
|
||||
self.layer2 = MakeLayer1(block, in_channels=256, out_channels=512, stride=2)
|
||||
self.layer3 = MakeLayer2(block, in_channels=512, out_channels=1024, stride=2)
|
||||
self.layer4 = MakeLayer3(block, in_channels=1024, out_channels=2048, stride=2)
|
||||
|
||||
self.pool = P.ReduceMean(keep_dims=True)
|
||||
self.squeeze = P.Squeeze(axis=(2, 3))
|
||||
|
@ -298,4 +297,4 @@ class ResNet(nn.Cell):
|
|||
|
||||
|
||||
def resnet50(batch_size, num_classes):
|
||||
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size)
|
||||
return ResNet(ResidualBlock, num_classes, batch_size)
|
||||
|
|
|
@ -114,9 +114,9 @@ class CrossEntropyLoss(nn.Cell):
|
|||
|
||||
def construct(self, logits, label):
|
||||
label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
|
||||
loss = self.cross_entropy(logits, label)[0]
|
||||
loss = self.mean(loss, (-1,))
|
||||
return loss
|
||||
loss_func = self.cross_entropy(logits, label)[0]
|
||||
loss_func = self.mean(loss_func, (-1,))
|
||||
return loss_func
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -146,4 +146,4 @@ if __name__ == '__main__':
|
|||
res = model.eval(eval_dataset)
|
||||
print("result: ", res)
|
||||
checker = os.path.exists("./memreuse.ir")
|
||||
assert checker == True
|
||||
assert checker, True
|
||||
|
|
|
@ -114,9 +114,9 @@ class CrossEntropyLoss(nn.Cell):
|
|||
|
||||
def construct(self, logits, label):
|
||||
label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
|
||||
loss = self.cross_entropy(logits, label)[0]
|
||||
loss = self.mean(loss, (-1,))
|
||||
return loss
|
||||
loss_func = self.cross_entropy(logits, label)[0]
|
||||
loss_func = self.mean(loss_func, (-1,))
|
||||
return loss_func
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -146,4 +146,4 @@ if __name__ == '__main__':
|
|||
res = model.eval(eval_dataset)
|
||||
print("result: ", res)
|
||||
checker = os.path.exists("./normal_memreuse.ir")
|
||||
assert checker == True
|
||||
assert checker, True
|
||||
|
|
|
@ -95,8 +95,7 @@ class ResidualBlock(nn.Cell):
|
|||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
stride=1,
|
||||
down_sample=False):
|
||||
stride=1):
|
||||
super(ResidualBlock, self).__init__()
|
||||
|
||||
out_chls = out_channels // self.expansion
|
||||
|
@ -184,7 +183,7 @@ class ResidualBlockWithDown(nn.Cell):
|
|||
|
||||
class MakeLayer0(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, in_channels, out_channels, stride):
|
||||
def __init__(self, block, in_channels, out_channels, stride):
|
||||
super(MakeLayer0, self).__init__()
|
||||
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True)
|
||||
self.b = block(out_channels, out_channels, stride=stride)
|
||||
|
@ -200,7 +199,7 @@ class MakeLayer0(nn.Cell):
|
|||
|
||||
class MakeLayer1(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, in_channels, out_channels, stride):
|
||||
def __init__(self, block, in_channels, out_channels, stride):
|
||||
super(MakeLayer1, self).__init__()
|
||||
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
|
||||
self.b = block(out_channels, out_channels, stride=1)
|
||||
|
@ -218,7 +217,7 @@ class MakeLayer1(nn.Cell):
|
|||
|
||||
class MakeLayer2(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, in_channels, out_channels, stride):
|
||||
def __init__(self, block, in_channels, out_channels, stride):
|
||||
super(MakeLayer2, self).__init__()
|
||||
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
|
||||
self.b = block(out_channels, out_channels, stride=1)
|
||||
|
@ -240,7 +239,7 @@ class MakeLayer2(nn.Cell):
|
|||
|
||||
class MakeLayer3(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, in_channels, out_channels, stride):
|
||||
def __init__(self, block, in_channels, out_channels, stride):
|
||||
super(MakeLayer3, self).__init__()
|
||||
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
|
||||
self.b = block(out_channels, out_channels, stride=1)
|
||||
|
@ -256,7 +255,7 @@ class MakeLayer3(nn.Cell):
|
|||
|
||||
class ResNet(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, num_classes=100, batch_size=32):
|
||||
def __init__(self, block, num_classes=100, batch_size=32):
|
||||
super(ResNet, self).__init__()
|
||||
self.batch_size = batch_size
|
||||
self.num_classes = num_classes
|
||||
|
@ -267,14 +266,10 @@ class ResNet(nn.Cell):
|
|||
self.relu = P.ReLU()
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="SAME")
|
||||
|
||||
self.layer1 = MakeLayer0(
|
||||
block, layer_num[0], in_channels=64, out_channels=256, stride=1)
|
||||
self.layer2 = MakeLayer1(
|
||||
block, layer_num[1], in_channels=256, out_channels=512, stride=2)
|
||||
self.layer3 = MakeLayer2(
|
||||
block, layer_num[2], in_channels=512, out_channels=1024, stride=2)
|
||||
self.layer4 = MakeLayer3(
|
||||
block, layer_num[3], in_channels=1024, out_channels=2048, stride=2)
|
||||
self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1)
|
||||
self.layer2 = MakeLayer1(block, in_channels=256, out_channels=512, stride=2)
|
||||
self.layer3 = MakeLayer2(block, in_channels=512, out_channels=1024, stride=2)
|
||||
self.layer4 = MakeLayer3(block, in_channels=1024, out_channels=2048, stride=2)
|
||||
|
||||
self.pool = P.ReduceMean(keep_dims=True)
|
||||
self.fc = fc_with_initialize(512 * block.expansion, num_classes)
|
||||
|
@ -298,4 +293,4 @@ class ResNet(nn.Cell):
|
|||
|
||||
|
||||
def resnet50(batch_size, num_classes):
|
||||
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size)
|
||||
return ResNet(ResidualBlock, num_classes, batch_size)
|
||||
|
|
|
@ -18,7 +18,7 @@ import numpy as np
|
|||
from apply_momentum import ApplyMomentum
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn as wrap
|
||||
from mindspore.nn import wrap
|
||||
from mindspore import Tensor, Model
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
|
|
|
@ -13,12 +13,10 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
from resnet_torch import resnet50
|
||||
|
||||
from mindspore import Tensor
|
||||
from mindspore.train.serialization import save, load, _check_filedir_or_create, _chg_model_file_name_if_same_exist, \
|
||||
_read_file_last_line, context, export
|
||||
from mindspore.train.serialization import context, export
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
@ -26,6 +24,4 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|||
def test_resnet50_export(batch_size=1, num_classes=5):
|
||||
input_np = np.random.uniform(0.0, 1.0, size=[batch_size, 3, 224, 224]).astype(np.float32)
|
||||
net = resnet50(batch_size, num_classes)
|
||||
# param_dict = load_checkpoint("./resnet50-1_103.ckpt")
|
||||
# load_param_into_net(net, param_dict)
|
||||
export(net, Tensor(input_np), file_name="./me_resnet50.pb", file_format="GEIR")
|
||||
|
|
|
@ -99,8 +99,7 @@ class ResidualBlock(nn.Cell):
|
|||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
stride=1,
|
||||
down_sample=False):
|
||||
stride=1):
|
||||
super(ResidualBlock, self).__init__()
|
||||
|
||||
out_chls = out_channels // self.expansion
|
||||
|
@ -188,7 +187,7 @@ class ResidualBlockWithDown(nn.Cell):
|
|||
|
||||
class MakeLayer0(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, in_channels, out_channels, stride):
|
||||
def __init__(self, block, in_channels, out_channels, stride):
|
||||
super(MakeLayer0, self).__init__()
|
||||
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True)
|
||||
self.b = block(out_channels, out_channels, stride=stride)
|
||||
|
@ -204,7 +203,7 @@ class MakeLayer0(nn.Cell):
|
|||
|
||||
class MakeLayer1(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, in_channels, out_channels, stride):
|
||||
def __init__(self, block, in_channels, out_channels, stride):
|
||||
super(MakeLayer1, self).__init__()
|
||||
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
|
||||
self.b = block(out_channels, out_channels, stride=1)
|
||||
|
@ -222,7 +221,7 @@ class MakeLayer1(nn.Cell):
|
|||
|
||||
class MakeLayer2(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, in_channels, out_channels, stride):
|
||||
def __init__(self, block, in_channels, out_channels, stride):
|
||||
super(MakeLayer2, self).__init__()
|
||||
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
|
||||
self.b = block(out_channels, out_channels, stride=1)
|
||||
|
@ -244,7 +243,7 @@ class MakeLayer2(nn.Cell):
|
|||
|
||||
class MakeLayer3(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, in_channels, out_channels, stride):
|
||||
def __init__(self, block, in_channels, out_channels, stride):
|
||||
super(MakeLayer3, self).__init__()
|
||||
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
|
||||
self.b = block(out_channels, out_channels, stride=1)
|
||||
|
@ -260,7 +259,7 @@ class MakeLayer3(nn.Cell):
|
|||
|
||||
class ResNet(nn.Cell):
|
||||
|
||||
def __init__(self, block, layer_num, num_classes=100, batch_size=32):
|
||||
def __init__(self, block, num_classes=100, batch_size=32):
|
||||
super(ResNet, self).__init__()
|
||||
self.batch_size = batch_size
|
||||
self.num_classes = num_classes
|
||||
|
@ -271,10 +270,10 @@ class ResNet(nn.Cell):
|
|||
self.relu = P.ReLU()
|
||||
self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="SAME")
|
||||
|
||||
self.layer1 = MakeLayer0(block, layer_num[0], in_channels=64, out_channels=256, stride=1)
|
||||
self.layer2 = MakeLayer1(block, layer_num[1], in_channels=256, out_channels=512, stride=2)
|
||||
self.layer3 = MakeLayer2(block, layer_num[2], in_channels=512, out_channels=1024, stride=2)
|
||||
self.layer4 = MakeLayer3(block, layer_num[3], in_channels=1024, out_channels=2048, stride=2)
|
||||
self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1)
|
||||
self.layer2 = MakeLayer1(block, in_channels=256, out_channels=512, stride=2)
|
||||
self.layer3 = MakeLayer2(block, in_channels=512, out_channels=1024, stride=2)
|
||||
self.layer4 = MakeLayer3(block, in_channels=1024, out_channels=2048, stride=2)
|
||||
|
||||
self.pool = P.ReduceMean(keep_dims=True)
|
||||
self.squeeze = P.Squeeze(axis=(2, 3))
|
||||
|
@ -298,4 +297,4 @@ class ResNet(nn.Cell):
|
|||
|
||||
|
||||
def resnet50(batch_size, num_classes):
|
||||
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size)
|
||||
return ResNet(ResidualBlock, num_classes, batch_size)
|
||||
|
|
|
@ -116,9 +116,9 @@ class CrossEntropyLoss(nn.Cell):
|
|||
|
||||
def construct(self, logits, label):
|
||||
label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
|
||||
loss = self.cross_entropy(logits, label)[0]
|
||||
loss = self.mean(loss, (-1,))
|
||||
return loss
|
||||
loss_func = self.cross_entropy(logits, label)[0]
|
||||
loss_func = self.mean(loss_func, (-1,))
|
||||
return loss_func
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
from resnet import resnet50
|
||||
|
@ -30,9 +30,8 @@ from mindspore import Tensor
|
|||
from mindspore import context
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
|
|
|
@ -15,11 +15,10 @@
|
|||
|
||||
import os
|
||||
import random
|
||||
from multiprocessing import Process, Queue
|
||||
import numpy as np
|
||||
import pytest
|
||||
from multiprocessing import Process, Queue
|
||||
from resnet import resnet50
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
|
|
Loading…
Reference in New Issue