forked from mindspore-Ecosystem/mindspore
for pylint 3rd
This commit is contained in:
parent
d6bed5452e
commit
80b738b0da
|
@ -12,8 +12,8 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
"""batch_matmul_impl"""
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusBatchMatMul",
|
||||
|
|
|
@ -12,8 +12,8 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
"""CusCholeskyTrsm"""
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusCholeskyTrsm",
|
||||
|
|
|
@ -109,4 +109,5 @@ NoneType = type(None)
|
|||
}""")
|
||||
def CusMatMulCubeFraczRightMul(input_x1, input_x2, input_x3, bias=None, output_y={}, trans_a=False, trans_b=False,
|
||||
kernel_name="matmulcube"):
|
||||
"""CusMatMulCubeFraczRightMul"""
|
||||
return
|
||||
|
|
|
@ -530,7 +530,7 @@ class Model:
|
|||
valid_dataset (Dataset): Dataset to evaluate the model.
|
||||
list_callback (ListCallback): Executor of callback list. Default: None.
|
||||
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
||||
|
||||
|
||||
Returns:
|
||||
Dict, returns the loss value & metrics values for the model in test mode.
|
||||
"""
|
||||
|
|
|
@ -126,7 +126,7 @@ def _bn_last(channel):
|
|||
def _fc(in_channel, out_channel, damping, loss_scale, frequency):
|
||||
weight_shape = (out_channel, in_channel)
|
||||
weight = Tensor(kaiming_uniform(weight_shape, a=math.sqrt(5))
|
||||
return Dense_Thor(in_channel, out_channel, has_bias=False, weight_init=weight,
|
||||
return Dense_Thor(in_channel, out_channel, has_bias=False, weight_init=weight, \
|
||||
bias_init=0, damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
|
||||
|
|
|
@ -196,7 +196,7 @@ class Conv2d_Thor(_Conv):
|
|||
self.channels_slice_flag = True
|
||||
|
||||
self.padA_flag = False
|
||||
if (self.matrix_A_dim // self.diag_block_dim) * self.diag_block_dim != self.matrix_A_dim
|
||||
if (self.matrix_A_dim // self.diag_block_dim) * self.diag_block_dim != self.matrix_A_dim \
|
||||
and self.matrix_A_dim > self.diag_block_dim:
|
||||
self.padA_flag = True
|
||||
pad_dim = self.diag_block_dim - self.matrix_A_dim % self.diag_block_dim
|
||||
|
|
|
@ -82,9 +82,9 @@ def get_second_order_damping(global_step, damping_init, decay_rate, total_epochs
|
|||
|
||||
current_step = global_step
|
||||
damping_each_step = np.array(damping_each_step).astype(np.float32)
|
||||
damping = damping_each_step[current_step:]
|
||||
print("damping_is=========", damping)
|
||||
return damping
|
||||
damping_now = damping_each_step[current_step:]
|
||||
print("damping_is=========", damping_now)
|
||||
return damping_now
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Reference in New Issue