forked from mindspore-Ecosystem/mindspore
!1094 Complete vm ops for L2Normalize and L2NormalizeGrad
Merge pull request !1094 from zhouneng/add_vm_support_l2normalize
This commit is contained in:
commit
7e3ec651dc
|
@ -125,6 +125,8 @@ from .layer_norm import _layer_norm_tbe
|
|||
from .layer_norm_grad import _layer_norm_grad_tbe
|
||||
from .layer_norm_x_backprop import _layer_norm_x_backprop_tbe
|
||||
from .l2_loss import _l2_loss_tbe
|
||||
from .l2_normalize import _l2_normalize_tbe
|
||||
from .l2_normalize_grad import _l2_normalize_grad_tbe
|
||||
from .square_sum_v1 import _square_sum_v1_tbe
|
||||
from .square_sum_v2 import _square_sum_v2_tbe
|
||||
from .confusion_transpose_d import _confusion_transpose_d_tbe
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""L2Normalize op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
l2_normalize_op_info = TBERegOp("L2Normalize") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("l2_normalize.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("l2_normalize") \
|
||||
.partial_flag(True) \
|
||||
.attr("axis", "required", "listInt", "all") \
|
||||
.attr("epsilon", "required", "float", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", True, "required", "all") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(l2_normalize_op_info)
|
||||
def _l2_normalize_tbe():
|
||||
"""L2Normalize TBE register"""
|
||||
return
|
|
@ -0,0 +1,40 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""L2NormalizeGrad op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
l2_normalize_grad_op_info = TBERegOp("L2NormalizeGrad") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("l2_normalize_grad.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("l2_normalize_grad") \
|
||||
.partial_flag(True) \
|
||||
.attr("axis", "required", "listInt", "all") \
|
||||
.attr("epsilon", "required", "float", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.input(1, "y", False, "required", "all") \
|
||||
.input(2, "dy", False, "requried", "all") \
|
||||
.output(0, "dx", True, "required", "all") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(l2_normalize_grad_op_info)
|
||||
def _l2_normalize_grad_tbe():
|
||||
"""L2NormalizeGrad TBE register"""
|
||||
return
|
|
@ -198,6 +198,18 @@ class ScalarSummaryNet(nn.Cell):
|
|||
return out
|
||||
|
||||
|
||||
class L2NormalizeNet(nn.Cell):
|
||||
""" L2NormalizeNet definition """
|
||||
|
||||
def __init__(self):
|
||||
super(L2NormalizeNet, self).__init__()
|
||||
self.l2_normalize = P.L2Normalize()
|
||||
|
||||
def construct(self, x):
|
||||
out = self.l2_normalize(x)
|
||||
return out
|
||||
|
||||
|
||||
class HistogramSummaryNet(nn.Cell):
|
||||
"""HistogramSummaryNet definition"""
|
||||
|
||||
|
@ -450,6 +462,10 @@ test_cases = [
|
|||
'block': ScalarSummaryNet(),
|
||||
'desc_inputs': [2.2],
|
||||
}),
|
||||
('L2Normalize', {
|
||||
'block': L2NormalizeNet(),
|
||||
'desc_inputs': [Tensor(np.array([[1.0, 2, 3], [4.0, 5, 6], [7.0, 8, 9]]), mindspore.float32)],
|
||||
}),
|
||||
('HistogramSummary', {
|
||||
'block': HistogramSummaryNet(),
|
||||
'desc_inputs': [[1,2,3]],
|
||||
|
|
|
@ -681,6 +681,15 @@ test_case_nn_ops = [
|
|||
'desc_inputs': [[16, 1234], [16, 1234]],
|
||||
'desc_bprop': [[64, 2]],
|
||||
'skip': ['backward']}),
|
||||
('L2Normalize', {
|
||||
'block': P.L2Normalize(),
|
||||
'desc_inputs': [[2, 2]],
|
||||
'desc_bprop': [[2, 2]]}),
|
||||
('L2NormalizeGrad', {
|
||||
'block': G.L2NormalizeGrad(),
|
||||
'desc_inputs': [[2, 2], [2, 2], [2, 2]],
|
||||
'desc_bprop': [[2, 2]],
|
||||
'skip': ['backward']}),
|
||||
('LayerNorm', {
|
||||
'block': P.LayerNorm(),
|
||||
'desc_inputs': [[2, 16], [16], [16]],
|
||||
|
|
Loading…
Reference in New Issue