forked from mindspore-Ecosystem/mindspore
add sigmoid op
This commit is contained in:
parent
6bf12a2eb3
commit
7c237620ba
|
@ -122,6 +122,7 @@ REGISTER(AssignSubInfo);
|
|||
REGISTER(ReLUInfo);
|
||||
REGISTER(GatherV2Info);
|
||||
REGISTER(SqrtInfo);
|
||||
REGISTER(SigmoidInfo);
|
||||
REGISTER(GetNextInfo);
|
||||
REGISTER(NegInfo);
|
||||
REGISTER(BatchMatMulInfo);
|
||||
|
|
|
@ -211,6 +211,14 @@ class SquareInfo : public ActivationOther {
|
|||
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
|
||||
~SquareInfo() override = default;
|
||||
};
|
||||
|
||||
class SigmoidInfo : public ActivationOther {
|
||||
public:
|
||||
SigmoidInfo(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape,
|
||||
const PrimitiveAttrs &attrs)
|
||||
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
|
||||
~SigmoidInfo() override = default;
|
||||
};
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_ACTIVATION_INFO_H_
|
||||
|
|
|
@ -48,74 +48,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
// splittable_op_ will continuously be updated
|
||||
std::vector<std::string> splittable_op_ = {MATMUL,
|
||||
GELU,
|
||||
TANH,
|
||||
SOFTMAX,
|
||||
LOG_SOFTMAX,
|
||||
ACTIVATION,
|
||||
PRELU,
|
||||
FLOORDIV,
|
||||
L2_NORMALIZE,
|
||||
TRANSPOSE,
|
||||
RESHAPE,
|
||||
TENSOR_ADD,
|
||||
SUB,
|
||||
MUL,
|
||||
DIV,
|
||||
GREATER,
|
||||
MAXPOOL,
|
||||
MAXPOOLV2,
|
||||
VIRTUAL_DATA_SET,
|
||||
SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS,
|
||||
RELU,
|
||||
ONEHOT,
|
||||
DROPOUT_DO_MASK,
|
||||
REDUCE_MAX,
|
||||
REDUCE_MIN,
|
||||
ARGMAXWITHVALUE,
|
||||
ARGMINWITHVALUE,
|
||||
REDUCE_SUM,
|
||||
CONV2D,
|
||||
FUSE_BATCH_NORM,
|
||||
POOLING,
|
||||
SOFTMAX_CROSS_ENTROPY_WITH_LOGITS,
|
||||
SIGMOID_CROSS_ENTROPY_WITH_LOGITS,
|
||||
MAX_POOL_WITH_ARGMAX,
|
||||
SIMPLE_MEAN,
|
||||
FLATTEN,
|
||||
BATCH_NORM,
|
||||
LAYER_NORM,
|
||||
BIAS_ADD,
|
||||
ASSIGN_SUB,
|
||||
COS,
|
||||
ACOS,
|
||||
EXP,
|
||||
LOG,
|
||||
REDUCE_MEAN,
|
||||
REAL_DIV,
|
||||
SIGMOID,
|
||||
POW,
|
||||
MAXIMUM,
|
||||
MINIMUM,
|
||||
EQUAL,
|
||||
NOT_EQUAL,
|
||||
LOGICALNOT,
|
||||
GATHERV2,
|
||||
STRIDEDSLICE,
|
||||
SQRT,
|
||||
GET_NEXT,
|
||||
CAST,
|
||||
NEG,
|
||||
SQUARE,
|
||||
BATCH_MATMUL,
|
||||
EXPAND_DIMS,
|
||||
SQUEEZE};
|
||||
|
||||
std::vector<std::string> elementwise_op_ = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU, SQRT, CAST,
|
||||
POW, EXP, LOG, COS, ACOS, LOGICALNOT, NEG, SQUARE};
|
||||
|
||||
bool StepAutoParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &) {
|
||||
MS_EXCEPTION_IF_NULL(root);
|
||||
MS_EXCEPTION_IF_NULL(ParallelContext::GetInstance());
|
||||
|
@ -314,14 +246,27 @@ std::vector<TypePtr> ExtractOutputTypeByNode(const CNodePtr &node) {
|
|||
}
|
||||
|
||||
bool IsElementWiseOperator(const std::string &op_name) {
|
||||
auto iter = std::find(elementwise_op_.begin(), elementwise_op_.end(), op_name);
|
||||
return (iter != elementwise_op_.end());
|
||||
static const std::set<std::string> elementwise_op = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU,
|
||||
SQRT, CAST, POW, EXP, LOG, COS,
|
||||
ACOS, LOGICALNOT, NEG, SQUARE, SIGMOID};
|
||||
auto iter = elementwise_op.find(op_name);
|
||||
return (iter != elementwise_op.end());
|
||||
}
|
||||
|
||||
bool IsSplittableOperator(const std::string &op_name) {
|
||||
std::vector<std::string>::iterator iter;
|
||||
iter = std::find(splittable_op_.begin(), splittable_op_.end(), op_name);
|
||||
return (iter != splittable_op_.end());
|
||||
// clang-format off
|
||||
static const std::set<std::string> splittable_op =
|
||||
{MATMUL, TRANSPOSE, GELU, TANH, SOFTMAX, SUB, MUL, DIV, RESHAPE, GREATER, LOG_SOFTMAX, ACTIVATION, PRELU,
|
||||
FLOORDIV, L2_NORMALIZE, TENSOR_ADD, MAXPOOL, MAXPOOLV2, VIRTUAL_DATA_SET, RELU, ONEHOT, DROPOUT_DO_MASK,
|
||||
REDUCE_MAX, REDUCE_MIN, ARGMAXWITHVALUE, ARGMINWITHVALUE, REDUCE_SUM, CONV2D, FUSE_BATCH_NORM, POOLING,
|
||||
MAX_POOL_WITH_ARGMAX, SIMPLE_MEAN, FLATTEN, BATCH_NORM, LAYER_NORM, BIAS_ADD, ASSIGN_SUB, COS, ACOS, EXP,
|
||||
LOG, REDUCE_MEAN, REAL_DIV, SIGMOID, POW, MAXIMUM, MINIMUM, EQUAL, NOT_EQUAL, LOGICALNOT, GATHERV2, SQRT,
|
||||
STRIDEDSLICE, GET_NEXT, CAST, NEG, SQUARE, BATCH_MATMUL, EXPAND_DIMS, SQUEEZE,
|
||||
SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, SIGMOID_CROSS_ENTROPY_WITH_LOGITS, SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS};
|
||||
// clang-format on
|
||||
|
||||
auto iter = splittable_op.find(op_name);
|
||||
return (iter != splittable_op.end());
|
||||
}
|
||||
|
||||
bool IsAutoParallelCareNode(const CNodePtr &cnode) {
|
||||
|
|
|
@ -0,0 +1,55 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
from mindspore import context, Tensor, Parameter
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.nn import Cell, TrainOneStepCell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, mul_weight, strategy1=None, strategy2=None):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().set_strategy(strategy1)
|
||||
self.sigmoid = P.Sigmoid().set_strategy(strategy2)
|
||||
self.mul_weight = Parameter(mul_weight, "w1")
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.mul(x, self.mul_weight)
|
||||
out = self.sigmoid(out)
|
||||
return out
|
||||
|
||||
|
||||
_x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
_w1 = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
|
||||
|
||||
def compile_net(net):
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_auto_parallel_activation():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((4, 4), (4, 4))
|
||||
strategy2 = None
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile_net(net)
|
Loading…
Reference in New Issue