forked from mindspore-Ecosystem/mindspore
fix the api comments
This commit is contained in:
parent
11e670c54b
commit
7b0dea9184
|
@ -22,15 +22,16 @@ from ....layer.basic import Dense, OneHot
|
|||
|
||||
class ConditionalVAE(Cell):
|
||||
r"""
|
||||
Conditional Variational auto-encoder (CVAE).
|
||||
Conditional Variational Auto-Encoder (CVAE).
|
||||
|
||||
The difference with VAE is that CVAE uses labels information.
|
||||
see more details in `<http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-
|
||||
conditional-generative-models>`.
|
||||
see more details in `Learning Structured Output Representation using Deep Conditional Generative Models
|
||||
<http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-
|
||||
generative-models>`_.
|
||||
|
||||
Note:
|
||||
When define the encoder and decoder, the shape of the encoder's output tensor and decoder's input tensor
|
||||
should be math:`(N, hidden_size)`.
|
||||
should be :math:`(N, hidden_size)`.
|
||||
The latent_size should be less than or equal to the hidden_size.
|
||||
|
||||
Args:
|
||||
|
@ -42,7 +43,7 @@ class ConditionalVAE(Cell):
|
|||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - the same shape as the input of encoder.
|
||||
- **input_y** (Tensor) - the tensor of the target data, the shape is math:`(N, 1)`.
|
||||
- **input_y** (Tensor) - the tensor of the target data, the shape is :math:`(N, 1)`.
|
||||
|
||||
Outputs:
|
||||
- **output** (tuple) - (recon_x(Tensor), x(Tensor), mu(Tensor), std(Tensor)).
|
||||
|
@ -100,13 +101,13 @@ class ConditionalVAE(Cell):
|
|||
Args:
|
||||
sample_y (Tensor): Define the label of sample, int tensor.
|
||||
generate_nums (int): The number of samples to generate.
|
||||
shape(tuple): The shape of sample, it should be math:`(generate_nums, C, H, W)` or math:`(-1, C, H, W)`.
|
||||
shape(tuple): The shape of sample, it should be (generate_nums, C, H, W) or (-1, C, H, W).
|
||||
|
||||
Returns:
|
||||
Tensor, the generated sample.
|
||||
"""
|
||||
generate_nums = check_int_positive(generate_nums)
|
||||
if not isinstance(shape, tuple) or len(shape) != 4 or shape[0] != generate_nums or shape[0] != -1:
|
||||
if not isinstance(shape, tuple) or len(shape) != 4 or (shape[0] != -1 and shape[0] != generate_nums):
|
||||
raise ValueError('The shape should be (generate_nums, C, H, W) or (-1, C, H, W).')
|
||||
sample_z = self.normal((generate_nums, self.latent_size), self.to_tensor(0.0), self.to_tensor(1.0), seed=0)
|
||||
sample_y = self.one_hot(sample_y)
|
||||
|
|
|
@ -22,14 +22,14 @@ from ....layer.basic import Dense
|
|||
|
||||
class VAE(Cell):
|
||||
r"""
|
||||
Variational auto-encoder (VAE).
|
||||
Variational Auto-Encoder (VAE).
|
||||
|
||||
The VAE defines a generative model, `Z` is sampled from the prior, then used to reconstruct `X` by a decoder.
|
||||
see more details in `Auto-Encoding Variational Bayes<https://arxiv.org/abs/1312.6114>`_.
|
||||
see more details in `Auto-Encoding Variational Bayes <https://arxiv.org/abs/1312.6114>`_.
|
||||
|
||||
Note:
|
||||
When define the encoder and decoder, the shape of the encoder's output tensor and decoder's input tensor
|
||||
should be math:`(N, hidden_size)`.
|
||||
should be :math:`(N, hidden_size)`.
|
||||
The latent_size should be less than or equal to the hidden_size.
|
||||
|
||||
Args:
|
||||
|
@ -88,13 +88,13 @@ class VAE(Cell):
|
|||
|
||||
Args:
|
||||
generate_nums (int): The number of samples to generate.
|
||||
shape(tuple): The shape of sample, it should be math:`(generate_nums, C, H, W)` or math:`(-1, C, H, W)`.
|
||||
shape(tuple): The shape of sample, it should be (generate_nums, C, H, W) or (-1, C, H, W).
|
||||
|
||||
Returns:
|
||||
Tensor, the generated sample.
|
||||
"""
|
||||
generate_nums = check_int_positive(generate_nums)
|
||||
if not isinstance(shape, tuple) or len(shape) != 4 or shape[0] != generate_nums or shape[0] != -1:
|
||||
if not isinstance(shape, tuple) or len(shape) != 4 or (shape[0] != -1 and shape[0] != generate_nums):
|
||||
raise ValueError('The shape should be (generate_nums, C, H, W) or (-1, C, H, W).')
|
||||
sample_z = self.normal((generate_nums, self.latent_size), self.to_tensor(0.0), self.to_tensor(1.0), seed=0)
|
||||
sample = self._decode(sample_z)
|
||||
|
|
|
@ -27,7 +27,7 @@ class ELBO(Cell):
|
|||
the posterior distribution. It maximizes the evidence lower bound (ELBO), a lower bound on the logarithm of
|
||||
the marginal probability of the observations log p(x). The ELBO is equal to the negative KL divergence up to
|
||||
an additive constant.
|
||||
see more details in `Variational Inference: A Review for Statisticians<https://arxiv.org/abs/1601.00670>`_.
|
||||
see more details in `Variational Inference: A Review for Statisticians <https://arxiv.org/abs/1601.00670>`_.
|
||||
|
||||
Args:
|
||||
latent_prior(str): The prior distribution of latent space. Default: Normal.
|
||||
|
|
|
@ -28,7 +28,7 @@ class SVI:
|
|||
Variational inference casts the inference problem as an optimization. Some distributions over the hidden
|
||||
variables that is indexed by a set of free parameters, and then optimize the parameters to make it closest to
|
||||
the posterior of interest.
|
||||
see more details in `Variational Inference: A Review for Statisticians<https://arxiv.org/abs/1601.00670>`_.
|
||||
see more details in `Variational Inference: A Review for Statisticians <https://arxiv.org/abs/1601.00670>`_.
|
||||
|
||||
Args:
|
||||
net_with_loss(Cell): Cell with loss function.
|
||||
|
|
|
@ -219,7 +219,7 @@ class EpistemicUncertaintyModel(Cell):
|
|||
after Dense layer or Conv layer, then use dropout during train and eval time.
|
||||
|
||||
See more details in `Dropout as a Bayesian Approximation: Representing Model uncertainty in Deep Learning
|
||||
<https://arxiv.org/abs/1506.02142>`.
|
||||
<https://arxiv.org/abs/1506.02142>`_.
|
||||
"""
|
||||
|
||||
def __init__(self, epi_model):
|
||||
|
@ -257,7 +257,7 @@ class AleatoricUncertaintyModel(Cell):
|
|||
uncertainty, the loss function should be modified in order to add variance into loss.
|
||||
|
||||
See more details in `What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
|
||||
<https://arxiv.org/abs/1703.04977>`.
|
||||
<https://arxiv.org/abs/1703.04977>`_.
|
||||
"""
|
||||
|
||||
def __init__(self, ale_model, num_classes, task):
|
||||
|
|
Loading…
Reference in New Issue