support vm for flatten

This commit is contained in:
jiangjinsheng 2020-05-13 16:57:10 +08:00
parent 8a853cec2d
commit 766906dd6d
3 changed files with 60 additions and 0 deletions

View File

@ -168,3 +168,4 @@ from .floor import _floor_tbe
from .log1p import _log1p_tbe
from .resize_bilinear import _resize_bilinear_tbe
from .resize_bilinear_grad import _resize_bilinear_grad_tbe
from .flatten import _flatten_tbe

View File

@ -0,0 +1,44 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Flatten op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
flatten_op_info = TBERegOp("Flatten") \
.fusion_type("OPAQUE") \
.async_flag(False) \
.binfile_name("flatten.so") \
.compute_cost(10) \
.kernel_name("flatten") \
.partial_flag(True) \
.input(0, "x", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.I8_Default, DataType.I8_Default) \
.dtype_format(DataType.U8_Default, DataType.U8_Default) \
.dtype_format(DataType.I16_Default, DataType.I16_Default) \
.dtype_format(DataType.U16_Default, DataType.U16_Default) \
.dtype_format(DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.U32_Default, DataType.U32_Default) \
.dtype_format(DataType.I64_Default, DataType.I64_Default) \
.dtype_format(DataType.U64_Default, DataType.U64_Default) \
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
.get_op_info()
@op_info_register(flatten_op_info)
def _flatten_tbe():
"""Flatten TBE register"""
return

View File

@ -447,6 +447,17 @@ class UnfoldNetSame(nn.Cell):
return self.unfold(x)
class FlattenNet(nn.Cell):
""" FlattenNet definition """
def __init__(self):
super(FlattenNet, self).__init__()
self.flatten = P.Flatten()
def construct(self, x):
return self.flatten(x)
test_cases = [
('SoftMaxGrad', {
'block': SoftMaxGrad(VirtualNetWithLoss(P.Softmax())),
@ -532,6 +543,10 @@ test_cases = [
'desc_inputs': [Tensor(np.array([3, 4, 5, 6]).astype(np.float32))],
'desc_bprop': [Tensor(np.array([1, 2, 3, 4]).astype(np.float32))],
'skip': ['backward']}),
('FlattenNet', {
'block': FlattenNet(),
'desc_inputs': [Tensor(np.ones([1, 2, 3, 4], np.float32))],
}),
]
test_cases_for_verify_exception = [