add UTs for LinearTransformation, ToPIL, ToType

This commit is contained in:
Tinazhang 2020-05-19 17:57:17 -04:00
parent 6f733ec113
commit 7322839b04
8 changed files with 484 additions and 0 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,225 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing LinearTransformation op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import diff_mse, visualize, save_and_check_md5
GENERATE_GOLDEN = False
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_linear_transformation_op(plot=False):
"""
Test LinearTransformation op: verify if images transform correctly
"""
logger.info("test_linear_transformation_01")
# Initialize parameters
height = 50
weight = 50
dim = 3 * height * weight
transformation_matrix = np.eye(dim)
mean_vector = np.zeros(dim)
# Define operations
transforms = [
py_vision.Decode(),
py_vision.CenterCrop([height, weight]),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data1 = data1.map(input_columns=["image"], operations=transform())
# Note: if transformation matrix is diagonal matrix with all 1 in diagonal,
# the output matrix in expected to be the same as the input matrix.
data1 = data1.map(input_columns=["image"],
operations=py_vision.LinearTransformation(transformation_matrix, mean_vector))
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform())
image_transformed = []
image = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_transformed.append(image1)
image.append(image2)
mse = diff_mse(image1, image2)
assert mse == 0
if plot:
visualize(image, image_transformed)
def test_linear_transformation_md5_01():
"""
Test LinearTransformation op: valid params (transformation_matrix, mean_vector)
Expected to pass
"""
logger.info("test_linear_transformation_md5_01")
# Initialize parameters
height = 50
weight = 50
dim = 3 * height * weight
transformation_matrix = np.ones([dim, dim])
mean_vector = np.zeros(dim)
# Generate dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.CenterCrop([height, weight]),
py_vision.ToTensor(),
py_vision.LinearTransformation(transformation_matrix, mean_vector)
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename = "linear_transformation_01_result.npz"
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
def test_linear_transformation_md5_02():
"""
Test LinearTransformation op: transformation_matrix is not provided
Expected to raise ValueError
"""
logger.info("test_linear_transformation_md5_02")
# Initialize parameters
height = 50
weight = 50
dim = 3 * height * weight
mean_vector = np.zeros(dim)
# Generate dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
try:
transforms = [
py_vision.Decode(),
py_vision.CenterCrop([height, weight]),
py_vision.ToTensor(),
py_vision.LinearTransformation(None, mean_vector)
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform())
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "not provided" in str(e)
def test_linear_transformation_md5_03():
"""
Test LinearTransformation op: mean_vector is not provided
Expected to raise ValueError
"""
logger.info("test_linear_transformation_md5_03")
# Initialize parameters
height = 50
weight = 50
dim = 3 * height * weight
transformation_matrix = np.ones([dim, dim])
# Generate dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
try:
transforms = [
py_vision.Decode(),
py_vision.CenterCrop([height, weight]),
py_vision.ToTensor(),
py_vision.LinearTransformation(transformation_matrix, None)
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform())
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "not provided" in str(e)
def test_linear_transformation_md5_04():
"""
Test LinearTransformation op: transformation_matrix is not a square matrix
Expected to raise ValueError
"""
logger.info("test_linear_transformation_md5_04")
# Initialize parameters
height = 50
weight = 50
dim = 3 * height * weight
transformation_matrix = np.ones([dim, dim - 1])
mean_vector = np.zeros(dim)
# Generate dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
try:
transforms = [
py_vision.Decode(),
py_vision.CenterCrop([height, weight]),
py_vision.ToTensor(),
py_vision.LinearTransformation(transformation_matrix, mean_vector)
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform())
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "square matrix" in str(e)
def test_linear_transformation_md5_05():
"""
Test LinearTransformation op: mean_vector does not match dimension of transformation_matrix
Expected to raise ValueError
"""
logger.info("test_linear_transformation_md5_05")
# Initialize parameters
height = 50
weight = 50
dim = 3 * height * weight
transformation_matrix = np.ones([dim, dim])
mean_vector = np.zeros(dim-1)
# Generate dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
try:
transforms = [
py_vision.Decode(),
py_vision.CenterCrop([height, weight]),
py_vision.ToTensor(),
py_vision.LinearTransformation(transformation_matrix, mean_vector)
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform())
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "should match" in str(e)
if __name__ == '__main__':
test_linear_transformation_op(True)
test_linear_transformation_md5_01()
test_linear_transformation_md5_02()
test_linear_transformation_md5_03()
test_linear_transformation_md5_04()
test_linear_transformation_md5_05()

View File

@ -0,0 +1,79 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing ToPIL op in DE
"""
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import save_and_check_md5
GENERATE_GOLDEN = False
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_to_pil_01():
"""
Test ToPIL Op with md5 comparison: input is already PIL image
Expected to pass
"""
logger.info("test_to_pil_01")
# Generate dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
# If input is already PIL image.
py_vision.ToPIL(),
py_vision.CenterCrop(375),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename = "to_pil_01_result.npz"
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
def test_to_pil_02():
"""
Test ToPIL Op with md5 comparison: input is not PIL image
Expected to pass
"""
logger.info("test_to_pil_02")
# Generate dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
transforms = [
# If input type is not PIL.
py_vision.ToPIL(),
py_vision.CenterCrop(375),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename = "to_pil_02_result.npz"
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_to_pil_01()
test_to_pil_02()

View File

@ -0,0 +1,180 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing ToType op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import save_and_check_md5
GENERATE_GOLDEN = False
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_to_type_op():
"""
Test ToType Op
"""
logger.info("test_to_type_op")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms1 = [
py_vision.Decode(),
py_vision.ToTensor(),
# Note: Convert the datatype from float32 to int16
py_vision.ToType(np.int16)
]
transform1 = py_vision.ComposeOp(transforms1)
data1 = data1.map(input_columns=["image"], operations=transform1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms2 = [
py_vision.Decode(),
py_vision.ToTensor()
]
transform2 = py_vision.ComposeOp(transforms2)
data2 = data2.map(input_columns=["image"], operations=transform2())
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image1 = item1["image"]
image2 = item2["image"]
assert isinstance(image1, np.ndarray)
assert isinstance(image2, np.ndarray)
assert image1.dtype == np.int16
assert image2.dtype == np.float32
assert image1.shape == image2.shape
def test_to_type_01():
"""
Test ToType Op with md5 comparison: valid input (Numpy dtype)
Expect to pass
"""
logger.info("test_to_type_01")
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.ToTensor(),
# Note: Convert the datatype from float32 to int32
py_vision.ToType(np.int32)
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename = "to_type_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_to_type_02():
"""
Test ToType Op with md5 comparison: valid input (str)
Expect to pass
"""
logger.info("test_to_type_02")
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.ToTensor(),
# Note: Convert to type int
py_vision.ToType('int')
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename = "to_type_02_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_to_type_03():
"""
Test ToType Op: invalid input image type
Expect to raise error
"""
logger.info("test_to_type_03")
try:
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
# Note: If the object is not numpy, e.g. PIL image, TypeError will raise
py_vision.ToType(np.int32)
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Numpy" in str(e)
def test_to_type_04():
"""
Test ToType Op: no output_type given
Expect to raise error
"""
logger.info("test_to_type_04")
try:
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.ToTensor(),
# Note: if output_type is not explicitly given
py_vision.ToType()
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "missing" in str(e)
def test_to_type_05():
"""
Test ToType Op: invalid output_type
Expect to raise error
"""
logger.info("test_to_type_05")
try:
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.ToTensor(),
# Note: if output_type is not explicitly given
py_vision.ToType('invalid')
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "data type" in str(e)
if __name__ == "__main__":
test_to_type_op()
test_to_type_01()
test_to_type_02()
test_to_type_03()
test_to_type_04()
test_to_type_05()