forked from mindspore-Ecosystem/mindspore
add UTs for LinearTransformation, ToPIL, ToType
This commit is contained in:
parent
6f733ec113
commit
7322839b04
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,225 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Testing LinearTransformation op in DE
|
||||
"""
|
||||
import numpy as np
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
||||
from mindspore import log as logger
|
||||
from util import diff_mse, visualize, save_and_check_md5
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||||
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||
|
||||
|
||||
def test_linear_transformation_op(plot=False):
|
||||
"""
|
||||
Test LinearTransformation op: verify if images transform correctly
|
||||
"""
|
||||
logger.info("test_linear_transformation_01")
|
||||
|
||||
# Initialize parameters
|
||||
height = 50
|
||||
weight = 50
|
||||
dim = 3 * height * weight
|
||||
transformation_matrix = np.eye(dim)
|
||||
mean_vector = np.zeros(dim)
|
||||
|
||||
# Define operations
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.CenterCrop([height, weight]),
|
||||
py_vision.ToTensor()
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
|
||||
# First dataset
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||
# Note: if transformation matrix is diagonal matrix with all 1 in diagonal,
|
||||
# the output matrix in expected to be the same as the input matrix.
|
||||
data1 = data1.map(input_columns=["image"],
|
||||
operations=py_vision.LinearTransformation(transformation_matrix, mean_vector))
|
||||
|
||||
# Second dataset
|
||||
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
data2 = data2.map(input_columns=["image"], operations=transform())
|
||||
|
||||
image_transformed = []
|
||||
image = []
|
||||
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
||||
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||
image_transformed.append(image1)
|
||||
image.append(image2)
|
||||
|
||||
mse = diff_mse(image1, image2)
|
||||
assert mse == 0
|
||||
if plot:
|
||||
visualize(image, image_transformed)
|
||||
|
||||
def test_linear_transformation_md5_01():
|
||||
"""
|
||||
Test LinearTransformation op: valid params (transformation_matrix, mean_vector)
|
||||
Expected to pass
|
||||
"""
|
||||
logger.info("test_linear_transformation_md5_01")
|
||||
|
||||
# Initialize parameters
|
||||
height = 50
|
||||
weight = 50
|
||||
dim = 3 * height * weight
|
||||
transformation_matrix = np.ones([dim, dim])
|
||||
mean_vector = np.zeros(dim)
|
||||
|
||||
# Generate dataset
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.CenterCrop([height, weight]),
|
||||
py_vision.ToTensor(),
|
||||
py_vision.LinearTransformation(transformation_matrix, mean_vector)
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||
|
||||
# Compare with expected md5 from images
|
||||
filename = "linear_transformation_01_result.npz"
|
||||
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
def test_linear_transformation_md5_02():
|
||||
"""
|
||||
Test LinearTransformation op: transformation_matrix is not provided
|
||||
Expected to raise ValueError
|
||||
"""
|
||||
logger.info("test_linear_transformation_md5_02")
|
||||
|
||||
# Initialize parameters
|
||||
height = 50
|
||||
weight = 50
|
||||
dim = 3 * height * weight
|
||||
mean_vector = np.zeros(dim)
|
||||
|
||||
# Generate dataset
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
try:
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.CenterCrop([height, weight]),
|
||||
py_vision.ToTensor(),
|
||||
py_vision.LinearTransformation(None, mean_vector)
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||
except ValueError as e:
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
assert "not provided" in str(e)
|
||||
|
||||
def test_linear_transformation_md5_03():
|
||||
"""
|
||||
Test LinearTransformation op: mean_vector is not provided
|
||||
Expected to raise ValueError
|
||||
"""
|
||||
logger.info("test_linear_transformation_md5_03")
|
||||
|
||||
# Initialize parameters
|
||||
height = 50
|
||||
weight = 50
|
||||
dim = 3 * height * weight
|
||||
transformation_matrix = np.ones([dim, dim])
|
||||
|
||||
# Generate dataset
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
try:
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.CenterCrop([height, weight]),
|
||||
py_vision.ToTensor(),
|
||||
py_vision.LinearTransformation(transformation_matrix, None)
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||
except ValueError as e:
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
assert "not provided" in str(e)
|
||||
|
||||
def test_linear_transformation_md5_04():
|
||||
"""
|
||||
Test LinearTransformation op: transformation_matrix is not a square matrix
|
||||
Expected to raise ValueError
|
||||
"""
|
||||
logger.info("test_linear_transformation_md5_04")
|
||||
|
||||
# Initialize parameters
|
||||
height = 50
|
||||
weight = 50
|
||||
dim = 3 * height * weight
|
||||
transformation_matrix = np.ones([dim, dim - 1])
|
||||
mean_vector = np.zeros(dim)
|
||||
|
||||
# Generate dataset
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
try:
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.CenterCrop([height, weight]),
|
||||
py_vision.ToTensor(),
|
||||
py_vision.LinearTransformation(transformation_matrix, mean_vector)
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||
except ValueError as e:
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
assert "square matrix" in str(e)
|
||||
|
||||
def test_linear_transformation_md5_05():
|
||||
"""
|
||||
Test LinearTransformation op: mean_vector does not match dimension of transformation_matrix
|
||||
Expected to raise ValueError
|
||||
"""
|
||||
logger.info("test_linear_transformation_md5_05")
|
||||
|
||||
# Initialize parameters
|
||||
height = 50
|
||||
weight = 50
|
||||
dim = 3 * height * weight
|
||||
transformation_matrix = np.ones([dim, dim])
|
||||
mean_vector = np.zeros(dim-1)
|
||||
|
||||
# Generate dataset
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
try:
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.CenterCrop([height, weight]),
|
||||
py_vision.ToTensor(),
|
||||
py_vision.LinearTransformation(transformation_matrix, mean_vector)
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||
except ValueError as e:
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
assert "should match" in str(e)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_linear_transformation_op(True)
|
||||
test_linear_transformation_md5_01()
|
||||
test_linear_transformation_md5_02()
|
||||
test_linear_transformation_md5_03()
|
||||
test_linear_transformation_md5_04()
|
||||
test_linear_transformation_md5_05()
|
|
@ -0,0 +1,79 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Testing ToPIL op in DE
|
||||
"""
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
||||
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
||||
from mindspore import log as logger
|
||||
from util import save_and_check_md5
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||||
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||
|
||||
|
||||
def test_to_pil_01():
|
||||
"""
|
||||
Test ToPIL Op with md5 comparison: input is already PIL image
|
||||
Expected to pass
|
||||
"""
|
||||
logger.info("test_to_pil_01")
|
||||
|
||||
# Generate dataset
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
# If input is already PIL image.
|
||||
py_vision.ToPIL(),
|
||||
py_vision.CenterCrop(375),
|
||||
py_vision.ToTensor()
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||
|
||||
# Compare with expected md5 from images
|
||||
filename = "to_pil_01_result.npz"
|
||||
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
def test_to_pil_02():
|
||||
"""
|
||||
Test ToPIL Op with md5 comparison: input is not PIL image
|
||||
Expected to pass
|
||||
"""
|
||||
logger.info("test_to_pil_02")
|
||||
|
||||
# Generate dataset
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
decode_op = c_vision.Decode()
|
||||
transforms = [
|
||||
# If input type is not PIL.
|
||||
py_vision.ToPIL(),
|
||||
py_vision.CenterCrop(375),
|
||||
py_vision.ToTensor()
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||
|
||||
# Compare with expected md5 from images
|
||||
filename = "to_pil_02_result.npz"
|
||||
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_to_pil_01()
|
||||
test_to_pil_02()
|
|
@ -0,0 +1,180 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Testing ToType op in DE
|
||||
"""
|
||||
import numpy as np
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
||||
from mindspore import log as logger
|
||||
from util import save_and_check_md5
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||||
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||
|
||||
|
||||
def test_to_type_op():
|
||||
"""
|
||||
Test ToType Op
|
||||
"""
|
||||
logger.info("test_to_type_op")
|
||||
|
||||
# First dataset
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
transforms1 = [
|
||||
py_vision.Decode(),
|
||||
py_vision.ToTensor(),
|
||||
# Note: Convert the datatype from float32 to int16
|
||||
py_vision.ToType(np.int16)
|
||||
]
|
||||
transform1 = py_vision.ComposeOp(transforms1)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform1())
|
||||
|
||||
# Second dataset
|
||||
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
transforms2 = [
|
||||
py_vision.Decode(),
|
||||
py_vision.ToTensor()
|
||||
]
|
||||
transform2 = py_vision.ComposeOp(transforms2)
|
||||
data2 = data2.map(input_columns=["image"], operations=transform2())
|
||||
|
||||
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
||||
image1 = item1["image"]
|
||||
image2 = item2["image"]
|
||||
|
||||
assert isinstance(image1, np.ndarray)
|
||||
assert isinstance(image2, np.ndarray)
|
||||
assert image1.dtype == np.int16
|
||||
assert image2.dtype == np.float32
|
||||
assert image1.shape == image2.shape
|
||||
|
||||
def test_to_type_01():
|
||||
"""
|
||||
Test ToType Op with md5 comparison: valid input (Numpy dtype)
|
||||
Expect to pass
|
||||
"""
|
||||
logger.info("test_to_type_01")
|
||||
|
||||
# Generate dataset
|
||||
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.ToTensor(),
|
||||
# Note: Convert the datatype from float32 to int32
|
||||
py_vision.ToType(np.int32)
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data = data.map(input_columns=["image"], operations=transform())
|
||||
|
||||
# Compare with expected md5 from images
|
||||
filename = "to_type_01_result.npz"
|
||||
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
def test_to_type_02():
|
||||
"""
|
||||
Test ToType Op with md5 comparison: valid input (str)
|
||||
Expect to pass
|
||||
"""
|
||||
logger.info("test_to_type_02")
|
||||
# Generate dataset
|
||||
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.ToTensor(),
|
||||
# Note: Convert to type int
|
||||
py_vision.ToType('int')
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data = data.map(input_columns=["image"], operations=transform())
|
||||
|
||||
# Compare with expected md5 from images
|
||||
filename = "to_type_02_result.npz"
|
||||
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
def test_to_type_03():
|
||||
"""
|
||||
Test ToType Op: invalid input image type
|
||||
Expect to raise error
|
||||
"""
|
||||
logger.info("test_to_type_03")
|
||||
|
||||
try:
|
||||
# Generate dataset
|
||||
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
# Note: If the object is not numpy, e.g. PIL image, TypeError will raise
|
||||
py_vision.ToType(np.int32)
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data = data.map(input_columns=["image"], operations=transform())
|
||||
except BaseException as e:
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
assert "Numpy" in str(e)
|
||||
|
||||
def test_to_type_04():
|
||||
"""
|
||||
Test ToType Op: no output_type given
|
||||
Expect to raise error
|
||||
"""
|
||||
logger.info("test_to_type_04")
|
||||
|
||||
try:
|
||||
# Generate dataset
|
||||
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.ToTensor(),
|
||||
# Note: if output_type is not explicitly given
|
||||
py_vision.ToType()
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data = data.map(input_columns=["image"], operations=transform())
|
||||
except BaseException as e:
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
assert "missing" in str(e)
|
||||
|
||||
def test_to_type_05():
|
||||
"""
|
||||
Test ToType Op: invalid output_type
|
||||
Expect to raise error
|
||||
"""
|
||||
logger.info("test_to_type_05")
|
||||
|
||||
try:
|
||||
# Generate dataset
|
||||
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.ToTensor(),
|
||||
# Note: if output_type is not explicitly given
|
||||
py_vision.ToType('invalid')
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data = data.map(input_columns=["image"], operations=transform())
|
||||
except BaseException as e:
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
assert "data type" in str(e)
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_to_type_op()
|
||||
test_to_type_01()
|
||||
test_to_type_02()
|
||||
test_to_type_03()
|
||||
test_to_type_04()
|
||||
test_to_type_05()
|
Loading…
Reference in New Issue