forked from mindspore-Ecosystem/mindspore
add BatchNormGrad2BNInferGrad pass
This commit is contained in:
parent
42ba885e58
commit
709828a98b
|
@ -50,6 +50,7 @@
|
||||||
#include "pre_activate/ascend/ir_fusion/remove_reshape_pair.h"
|
#include "pre_activate/ascend/ir_fusion/remove_reshape_pair.h"
|
||||||
#include "pre_activate/ascend/ir_fusion/derelu_fusion.h"
|
#include "pre_activate/ascend/ir_fusion/derelu_fusion.h"
|
||||||
#include "pre_activate/ascend/ir_fusion/batchnorm_to_bninfer.h"
|
#include "pre_activate/ascend/ir_fusion/batchnorm_to_bninfer.h"
|
||||||
|
#include "pre_activate/ascend/ir_fusion/batchnormgrad_to_bninfergrad.h"
|
||||||
#include "pre_activate/ascend/format_type/insert_trans_op.h"
|
#include "pre_activate/ascend/format_type/insert_trans_op.h"
|
||||||
#include "pre_activate/pass/getitem_tuple.h"
|
#include "pre_activate/pass/getitem_tuple.h"
|
||||||
#include "pre_activate/pass/optimize_dependence.h"
|
#include "pre_activate/pass/optimize_dependence.h"
|
||||||
|
@ -102,6 +103,7 @@ void AddAscendBackendOptionalIRFusion(PassManager *ir_fusion_pm) {
|
||||||
ir_fusion_pm->AddPass(std::make_shared<TransposeTransDataFusion>());
|
ir_fusion_pm->AddPass(std::make_shared<TransposeTransDataFusion>());
|
||||||
ir_fusion_pm->AddPass(std::make_shared<GetitemTuple>());
|
ir_fusion_pm->AddPass(std::make_shared<GetitemTuple>());
|
||||||
ir_fusion_pm->AddPass(std::make_shared<BatchNorm2BNInfer>());
|
ir_fusion_pm->AddPass(std::make_shared<BatchNorm2BNInfer>());
|
||||||
|
ir_fusion_pm->AddPass(std::make_shared<BatchNormGrad2BNInferGrad>());
|
||||||
}
|
}
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
|
|
|
@ -96,6 +96,7 @@ bool NeedFusion(const FuncGraphPtr &graph, const AnfNodePtr &node, CNodePtr *bat
|
||||||
|
|
||||||
AnfNodePtr batchnorm_anf = tuple_getitem->input(kRealInputNodeIndexInTupleGetItem);
|
AnfNodePtr batchnorm_anf = tuple_getitem->input(kRealInputNodeIndexInTupleGetItem);
|
||||||
MS_EXCEPTION_IF_NULL(batchnorm_anf);
|
MS_EXCEPTION_IF_NULL(batchnorm_anf);
|
||||||
|
MS_EXCEPTION_IF_NULL(batchnorm);
|
||||||
*batchnorm = batchnorm_anf->cast<CNodePtr>();
|
*batchnorm = batchnorm_anf->cast<CNodePtr>();
|
||||||
MS_EXCEPTION_IF_NULL(*batchnorm);
|
MS_EXCEPTION_IF_NULL(*batchnorm);
|
||||||
return CheckBatchNorm(graph, *batchnorm);
|
return CheckBatchNorm(graph, *batchnorm);
|
||||||
|
|
|
@ -0,0 +1,127 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include "pre_activate/ascend/ir_fusion/batchnormgrad_to_bninfergrad.h"
|
||||||
|
#include <memory>
|
||||||
|
#include <vector>
|
||||||
|
#include "session/anf_runtime_algorithm.h"
|
||||||
|
#include "ir/primitive.h"
|
||||||
|
#include "utils/utils.h"
|
||||||
|
#include "operator/ops.h"
|
||||||
|
#include "pipeline/static_analysis/abstract_value.h"
|
||||||
|
#include "pre_activate/common/helper.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
namespace {
|
||||||
|
CNodePtr CreateBNInferGrad(const FuncGraphPtr &graph, const CNodePtr &batchnormgrad, const AnfNodePtr &node) {
|
||||||
|
MS_EXCEPTION_IF_NULL(graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(batchnormgrad);
|
||||||
|
auto prim = std::make_shared<Primitive>(kBNInferGradOpName);
|
||||||
|
std::vector<AnfNodePtr> inputs = {NewValueNode(prim)};
|
||||||
|
inputs.push_back(batchnormgrad->input(1));
|
||||||
|
inputs.push_back(batchnormgrad->input(3));
|
||||||
|
inputs.push_back(batchnormgrad->input(5));
|
||||||
|
auto new_node = graph->NewCNode(inputs);
|
||||||
|
MS_EXCEPTION_IF_NULL(new_node);
|
||||||
|
new_node->set_scope(batchnormgrad->scope());
|
||||||
|
new_node->set_abstract(node->abstract());
|
||||||
|
AnfAlgo::CopyNodeAttr(kAttrIsTraining, batchnormgrad, new_node);
|
||||||
|
AnfAlgo::CopyNodeAttr(kAttrEpsilon, batchnormgrad, new_node);
|
||||||
|
return new_node;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CheckIndex(const AnfNodePtr &index_node) {
|
||||||
|
MS_EXCEPTION_IF_NULL(index_node);
|
||||||
|
if (!IsValueNode<Int32Imm>(index_node)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
ValueNodePtr value_node = index_node->cast<ValueNodePtr>();
|
||||||
|
MS_EXCEPTION_IF_NULL(value_node);
|
||||||
|
int index = GetValue<int>(value_node->value());
|
||||||
|
if (index != 0) {
|
||||||
|
MS_LOG(DEBUG) << "tuple_getitem must be 0th output of BatchNormGrad";
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CheckBatchNormGrad(const FuncGraphPtr &graph, const CNodePtr &batchnormgrad) {
|
||||||
|
MS_EXCEPTION_IF_NULL(graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(batchnormgrad);
|
||||||
|
if (batchnormgrad->size() < kBatchNormInputNum + 1) {
|
||||||
|
MS_LOG(DEBUG) << "BatchNormGrad's input less than " << kBatchNormInputNum;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if (!AnfAlgo::HasNodeAttr(kAttrIsTraining, batchnormgrad)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
auto is_training = AnfAlgo::GetNodeAttr<bool>(batchnormgrad, kAttrIsTraining);
|
||||||
|
if (is_training) {
|
||||||
|
MS_LOG(DEBUG) << "is_training is true, no need do fusion";
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (IsUsedByOthers(graph, batchnormgrad)) {
|
||||||
|
MS_LOG(DEBUG) << "Only the 0th output of BatchNormGrad is used, then do fusion";
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool NeedFusion(const FuncGraphPtr &graph, const AnfNodePtr &node, CNodePtr *batchnormgrad) {
|
||||||
|
MS_EXCEPTION_IF_NULL(graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(node);
|
||||||
|
auto tuple_getitem = node->cast<CNodePtr>();
|
||||||
|
MS_EXCEPTION_IF_NULL(tuple_getitem);
|
||||||
|
CheckCNodeInputSize(tuple_getitem, kTupleGetItemInputSize);
|
||||||
|
AnfNodePtr index_node = tuple_getitem->input(kInputNodeOutputIndexInTupleGetItem);
|
||||||
|
MS_EXCEPTION_IF_NULL(index_node);
|
||||||
|
if (!CheckIndex(index_node)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
AnfNodePtr batchnormgrad_anf = tuple_getitem->input(kRealInputNodeIndexInTupleGetItem);
|
||||||
|
MS_EXCEPTION_IF_NULL(batchnormgrad_anf);
|
||||||
|
MS_EXCEPTION_IF_NULL(batchnormgrad);
|
||||||
|
*batchnormgrad = batchnormgrad_anf->cast<CNodePtr>();
|
||||||
|
MS_EXCEPTION_IF_NULL(*batchnormgrad);
|
||||||
|
return CheckBatchNormGrad(graph, *batchnormgrad);
|
||||||
|
}
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
const BaseRef BatchNormGrad2BNInferGrad::DefinePattern() const {
|
||||||
|
VarPtr Xs = std::make_shared<SeqVar>();
|
||||||
|
VarPtr Y = std::make_shared<Var>();
|
||||||
|
MS_EXCEPTION_IF_NULL(Xs);
|
||||||
|
MS_EXCEPTION_IF_NULL(Y);
|
||||||
|
VectorRef batchnormgrad({prim::kPrimBatchNormGrad, Xs});
|
||||||
|
VectorRef pattern({prim::kPrimTupleGetItem, batchnormgrad, Y});
|
||||||
|
return pattern;
|
||||||
|
}
|
||||||
|
|
||||||
|
const AnfNodePtr BatchNormGrad2BNInferGrad::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
|
||||||
|
const EquivPtr &) const {
|
||||||
|
MS_EXCEPTION_IF_NULL(graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(node);
|
||||||
|
|
||||||
|
CNodePtr batchnormgrad = nullptr;
|
||||||
|
if (!NeedFusion(graph, node, &batchnormgrad)) {
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
return CreateBNInferGrad(graph, batchnormgrad, node);
|
||||||
|
}
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
|
@ -0,0 +1,34 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_BATCHNORMGRAD_TO_BNINFERGRAD_H_
|
||||||
|
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_BATCHNORMGRAD_TO_BNINFERGRAD_H_
|
||||||
|
|
||||||
|
#include <memory>
|
||||||
|
#include "pre_activate/common/optimizer.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
class BatchNormGrad2BNInferGrad : public PatternProcessPass {
|
||||||
|
public:
|
||||||
|
explicit BatchNormGrad2BNInferGrad(bool multigraph = true)
|
||||||
|
: PatternProcessPass("batchnormgrad_to_bninfergrad", multigraph) {}
|
||||||
|
~BatchNormGrad2BNInferGrad() override = default;
|
||||||
|
const BaseRef DefinePattern() const override;
|
||||||
|
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||||
|
};
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
||||||
|
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_BATCHNORMGRAD_TO_BNINFERGRAD_H_
|
|
@ -0,0 +1,73 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include "common/backend_common_test.h"
|
||||||
|
#include "common/py_func_graph_fetcher.h"
|
||||||
|
#include "pre_activate/common/optimizer.h"
|
||||||
|
#include "pre_activate/ascend/ir_fusion/batchnormgrad_to_bninfergrad.h"
|
||||||
|
#include "debug/anf_ir_dump.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
class TestHWOptimizeBatchNormGrad2BNInferGrad : public BackendCommon {
|
||||||
|
public:
|
||||||
|
TestHWOptimizeBatchNormGrad2BNInferGrad()
|
||||||
|
: get_py_fun_("gtest_input.pre_activate.batchnormgrad_to_bninfergrad", true) {}
|
||||||
|
~TestHWOptimizeBatchNormGrad2BNInferGrad() override = default;
|
||||||
|
|
||||||
|
UT::PyFuncGraphFetcher get_py_fun_;
|
||||||
|
};
|
||||||
|
|
||||||
|
TEST_F(TestHWOptimizeBatchNormGrad2BNInferGrad, test_fusion) {
|
||||||
|
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_batchnormgrad_to_bninfergrad", "before");
|
||||||
|
EXPECT_NE(g, nullptr);
|
||||||
|
std::vector<int> shp_x{32, 64, 112, 112};
|
||||||
|
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
|
||||||
|
std::vector<int> shp_y{64};
|
||||||
|
auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_y);
|
||||||
|
AbstractBasePtrList args_spec_list{x_abstract, x_abstract, y_abstract, y_abstract, y_abstract};
|
||||||
|
auto fg = GetKernelGraph(g, args_spec_list);
|
||||||
|
|
||||||
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||||
|
auto pm = std::make_shared<opt::PassManager>();
|
||||||
|
pm->AddPass(std::make_shared<opt::BatchNormGrad2BNInferGrad>());
|
||||||
|
optimizer->AddPassManager(pm);
|
||||||
|
FuncGraphPtr new_graph = optimizer->Optimize(fg);
|
||||||
|
|
||||||
|
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_batchnormgrad_to_bninfergrad", "after");
|
||||||
|
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(TestHWOptimizeBatchNormGrad2BNInferGrad, test_no_fusion) {
|
||||||
|
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_batchnormgrad_to_bninfergrad", "no_fusion");
|
||||||
|
EXPECT_NE(g, nullptr);
|
||||||
|
std::vector<int> shp_x{32, 64, 112, 112};
|
||||||
|
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
|
||||||
|
std::vector<int> shp_y{64};
|
||||||
|
auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_y);
|
||||||
|
AbstractBasePtrList args_spec_list{x_abstract, x_abstract, y_abstract, y_abstract, y_abstract};
|
||||||
|
auto fg = GetKernelGraph(g, args_spec_list);
|
||||||
|
auto origin_graph = std::make_shared<session::KernelGraph>(*fg);
|
||||||
|
|
||||||
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||||
|
auto pm = std::make_shared<opt::PassManager>();
|
||||||
|
pm->AddPass(std::make_shared<opt::BatchNormGrad2BNInferGrad>());
|
||||||
|
optimizer->AddPassManager(pm);
|
||||||
|
FuncGraphPtr new_graph = optimizer->Optimize(fg);
|
||||||
|
|
||||||
|
EXPECT_TRUE(CheckEqualGraph(origin_graph, new_graph));
|
||||||
|
}
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
|
@ -0,0 +1,57 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
from mindspore.ops.operations import _grad_ops as G
|
||||||
|
from mindspore.ops import Primitive
|
||||||
|
|
||||||
|
batch_norm_grad = G.BatchNormGrad(is_training=False)
|
||||||
|
bn_infer_grad = Primitive('BNInferGrad')
|
||||||
|
make_tuple = Primitive('make_tuple')
|
||||||
|
tuple_getitem = Primitive('tuple_getitem')
|
||||||
|
|
||||||
|
class FnDict:
|
||||||
|
def __init__(self):
|
||||||
|
self.fnDict = {}
|
||||||
|
|
||||||
|
def __call__(self, fn):
|
||||||
|
self.fnDict[fn.__name__] = fn
|
||||||
|
|
||||||
|
def __getitem__(self, name):
|
||||||
|
return self.fnDict[name]
|
||||||
|
|
||||||
|
def test_batchnormgrad_to_bninfergrad(tag):
|
||||||
|
fns = FnDict()
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def before(input0, input1, input2, input3, input4):
|
||||||
|
res = batch_norm_grad(input0, input1, input2, input3, input4)
|
||||||
|
res = tuple_getitem(res, 0)
|
||||||
|
return res
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def after(input0, input1, input2, input3, input4):
|
||||||
|
res = bn_infer_grad(input0, input2, input4)
|
||||||
|
return make_tuple(res)
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def no_fusion(input0, input1, input2, input3, input4):
|
||||||
|
res = batch_norm_grad(input0, input1, input2, input3, input4)
|
||||||
|
item0 = tuple_getitem(res, 0)
|
||||||
|
item1 = tuple_getitem(res, 1)
|
||||||
|
item2 = tuple_getitem(res, 2)
|
||||||
|
return make_tuple(item0, item1, item2)
|
||||||
|
|
||||||
|
return fns[tag]
|
Loading…
Reference in New Issue