forked from mindspore-Ecosystem/mindspore
gpu queue support unary
This commit is contained in:
parent
afe048474d
commit
67a0cc3bf1
|
@ -60,6 +60,34 @@ __global__ void SquareKernel(T *input, T *output, size_t count) {
|
|||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void SqrtKernel(T *input, T *output, size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = sqrt(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <>
|
||||
__global__ void SqrtKernel(half *input, half *output, size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = hsqrt(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void RsqrtKernel(T *input, T *output, size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = rsqrt(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <>
|
||||
__global__ void RsqrtKernel(half *input, half *output, size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = hrsqrt(input[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void ZeroslikeKernel(T *output, size_t count) {
|
||||
T zero = 0.0;
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
|
@ -93,6 +121,21 @@ void Square(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
|||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Pow(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
PowKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Sqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
SqrtKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Rsqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
RsqrtKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Zeroslike(T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
ZeroslikeKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(output, count);
|
||||
return;
|
||||
|
@ -103,10 +146,14 @@ template void Logarithm<float>(float *input, float *output, size_t count, cudaSt
|
|||
template void Negative<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Reciprocal<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Square<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Sqrt<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Rsqrt<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Zeroslike<float>(float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Exponential<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Logarithm<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Negative<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Reciprocal<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Square<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Sqrt<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Rsqrt<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Zeroslike<half>(half *output, size_t count, cudaStream_t cuda_stream);
|
||||
|
|
|
@ -29,6 +29,10 @@ void Reciprocal(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
|||
template <typename T>
|
||||
void Square(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Sqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Rsqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Zeroslike(T *output, size_t count, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_UNARYOPIMPL_H_
|
||||
|
|
|
@ -42,5 +42,9 @@ MS_REG_GPU_KERNEL_ONE(Square, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddO
|
|||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Square, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
UnaryOpGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(Sqrt, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Rsqrt, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -34,6 +34,8 @@ enum UnaryOptype {
|
|||
UNARY_OP_RECIPROCAL,
|
||||
UNARY_OP_ZEROSLIKE,
|
||||
UNARY_OP_SQUARE,
|
||||
UNARY_OP_SQRT,
|
||||
UNARY_OP_RSQRT,
|
||||
UNARY_OP_INVALID_TYPE = 255
|
||||
};
|
||||
static const std::map<std::string, UnaryOptype> kUnaryOpTypeMap = {{"Exp", UNARY_OP_EXP},
|
||||
|
@ -41,7 +43,9 @@ static const std::map<std::string, UnaryOptype> kUnaryOpTypeMap = {{"Exp", UNARY
|
|||
{"Neg", UNARY_OP_NEG},
|
||||
{"Reciprocal", UNARY_OP_RECIPROCAL},
|
||||
{"ZerosLike", UNARY_OP_ZEROSLIKE},
|
||||
{"Square", UNARY_OP_SQUARE}};
|
||||
{"Square", UNARY_OP_SQUARE},
|
||||
{"Sqrt", UNARY_OP_SQRT},
|
||||
{"Rsqrt", UNARY_OP_RSQRT}};
|
||||
template <typename T>
|
||||
class UnaryOpGpuKernel : public GpuKernel {
|
||||
public:
|
||||
|
@ -80,6 +84,14 @@ class UnaryOpGpuKernel : public GpuKernel {
|
|||
Square(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_SQRT: {
|
||||
Sqrt(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_RSQRT: {
|
||||
Rsqrt(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_ZEROSLIKE: {
|
||||
Zeroslike(output_addr, output_size_ / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sqrt():
|
||||
x_np = np.random.rand(2, 3, 4, 4).astype(np.float32)
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
output_ms = P.Sqrt()(Tensor(x_np))
|
||||
output_np = np.sqrt(x_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
output_ms = P.Rsqrt()(Tensor(x_np))
|
||||
output_np = 1 / np.sqrt(x_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
Loading…
Reference in New Issue