!394 [AutoParallel] Simplify rec-prog parser mechanism

Merge pull request !394 from Chong/parser
This commit is contained in:
mindspore-ci-bot 2020-04-21 14:07:24 +08:00 committed by Gitee
commit 5b6b1ad727
3 changed files with 88 additions and 260 deletions

View File

@ -39,304 +39,149 @@ const TensorParam MakeTensor(int n, int c, int h, int w) {
return tensor;
}
bool IsInList(const std::string& name, const std::vector<std::string>& list) {
return std::find(list.begin(), list.end(), name) != list.end();
}
Graph::NodeType MakeNewOperator(std::vector<std::shared_ptr<OperatorInfo>> ops, size_t iter_ops) {
Graph::NodeType NewOp;
NewOp.name = ops[iter_ops]->cnode_name();
NewOp.name = ops[iter_ops]->name();
NewOp.info = InfoType::kApplication;
auto op_type = ops[iter_ops]->type();
auto idx = DictOpType.find(op_type);
if (idx == DictOpType.end()) {
NewOp.apply.op_type = OperatorType::kRecUnkownType;
MS_LOG(INFO) << "Unknown type in rec_parse_graph::MakeNewOperator";
MS_LOG(INFO) << "Unknown operator type.";
} else {
NewOp.apply.op_type = DictOpType.at(op_type);
}
if ((NewOp.apply.op_type == OperatorType::kRecMatMul) || (NewOp.apply.op_type == OperatorType::kRecBiasAdd) ||
(NewOp.apply.op_type == OperatorType::kRecReshape)) {
NewOp.tensor_parm = MakeTensor(1, 1, ops[iter_ops]->outputs_tensor_info()[0].shape()[0],
ops[iter_ops]->outputs_tensor_info()[0].shape()[1]);
} else if ((NewOp.apply.op_type == OperatorType::kRecSparseSoftmaxCrossEntropyWithLogits) ||
(NewOp.apply.op_type == OperatorType::kRecUnkownType)) {
NewOp.tensor_parm = MakeTensor(1, 1, 1, 1);
} else {
if (ops[iter_ops]->outputs_tensor_info()[0].shape().size() == 4) {
NewOp.tensor_parm = MakeTensor(
ops[iter_ops]->outputs_tensor_info()[0].shape()[0], ops[iter_ops]->outputs_tensor_info()[0].shape()[1],
ops[iter_ops]->outputs_tensor_info()[0].shape()[2], ops[iter_ops]->outputs_tensor_info()[0].shape()[3]);
} else if (ops[iter_ops]->outputs_tensor_info()[0].shape().size() == 2) {
NewOp.tensor_parm = Fill2DTensor(ops, iter_ops, NewOp);
} else if (ops[iter_ops]->outputs_tensor_info()[0].shape().size() == 1) {
NewOp.tensor_parm = MakeTensor(1, 1, 1, ops[iter_ops]->outputs_tensor_info()[0].shape()[0]);
} else if (ops[iter_ops]->outputs_tensor_info()[0].shape().size() == 0) {
NewOp.tensor_parm = MakeTensor(1, 1, 1, 1);
} else {
MS_LOG(ERROR) << "Tensor's shape is unknown.";
}
NewOp.apply = CompleteOperatorInputs(ops, iter_ops, NewOp);
return NewOp;
}
Graph::NodeType MakeNewTensor(std::vector<std::shared_ptr<OperatorInfo>> ops, const size_t iter_ops,
const std::string& input, const size_t iter_input_tensors, std::shared_ptr<Graph> graph,
size_t current_op_index) {
Graph::NodeType NewTensor;
NewTensor.name = input;
NewTensor.info = InfoType::kConstant;
if (ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape().size() == 4) {
NewTensor.tensor_parm = MakeTensor(ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[1],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[2],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[3]);
} else if (ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape().size() == 2) {
Fill2DTensor(ops, iter_ops, graph, iter_input_tensors, current_op_index, NewTensor);
} else if (ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape().size() == 1) {
NewTensor.tensor_parm = MakeTensor(1, 1, 1, ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0]);
} else if (ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape().size() == 0) {
NewTensor.tensor_parm = MakeTensor(1, 1, 1, 1);
} else {
MS_LOG(ERROR) << "Tensor's shape unknown in rec_parse_graph::MakeNewTensor";
}
return NewTensor;
}
void Fill2DTensor(const std::vector<std::shared_ptr<OperatorInfo>>& ops, const size_t iter_ops,
const std::shared_ptr<Graph> graph, const size_t iter_input_tensors, const size_t current_op_index,
Graph::NodeType NewTensor) {
if (graph->nodes[current_op_index].apply.op_type == OperatorType::kRecMatMul) {
TensorParam Fill2DTensor(const std::vector<std::shared_ptr<OperatorInfo>>& ops, const size_t iter_ops,
Graph::NodeType NewTensor) {
if (NewTensor.apply.op_type == OperatorType::kRecMatMul) {
auto attrs = ops[iter_ops]->attrs();
bool transpose_a = attrs[TRANSPOSE_A]->cast<BoolImmPtr>()->value();
bool transpose_b = attrs[TRANSPOSE_B]->cast<BoolImmPtr>()->value();
if (transpose_a && (iter_input_tensors == 0)) {
NewTensor.tensor_parm = MakeTensor(1, 1, ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[1],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0]);
} else if (transpose_b && (iter_input_tensors == 1)) {
NewTensor.tensor_parm = MakeTensor(1, 1, ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[1],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0]);
if (transpose_a) {
NewTensor.tensor_parm = MakeTensor(1, 1, ops[iter_ops]->inputs_tensor_info()[0].shape()[1],
ops[iter_ops]->inputs_tensor_info()[0].shape()[0]);
} else if (transpose_b) {
NewTensor.tensor_parm = MakeTensor(1, 1, ops[iter_ops]->inputs_tensor_info()[0].shape()[1],
ops[iter_ops]->inputs_tensor_info()[0].shape()[0]);
} else {
NewTensor.tensor_parm = MakeTensor(1, 1, ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[1]);
NewTensor.tensor_parm = MakeTensor(1, 1, ops[iter_ops]->inputs_tensor_info()[0].shape()[0],
ops[iter_ops]->inputs_tensor_info()[0].shape()[1]);
}
} else {
NewTensor.tensor_parm = MakeTensor(1, 1, ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[1]);
NewTensor.tensor_parm = MakeTensor(1, 1, ops[iter_ops]->inputs_tensor_info()[0].shape()[0],
ops[iter_ops]->inputs_tensor_info()[0].shape()[1]);
}
return NewTensor.tensor_parm;
}
void CompleteOperatorInputs(std::vector<std::shared_ptr<OperatorInfo>> ops, size_t iter_ops, size_t iter_input_tensors,
size_t current_op_index, std::shared_ptr<Graph> graph) {
if (ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape().size() == 4) {
graph->nodes[current_op_index].apply.arguments[iter_input_tensors] =
MakeTensor(ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[1],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[2],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[3]);
} else if (ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape().size() == 2) {
Complete2DInputs(ops, iter_ops, graph, iter_input_tensors, current_op_index);
} else if (ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape().size() == 1) {
graph->nodes[current_op_index].apply.arguments[iter_input_tensors] =
MakeTensor(1, 1, 1, ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0]);
} else if (ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape().size() == 0) {
graph->nodes[current_op_index].apply.arguments[iter_input_tensors] = MakeTensor(1, 1, 1, 1);
} else {
MS_LOG(ERROR) << "Tensor's shape unknown in rec_parse_graph::MakeNewTensor";
OperatorRec CompleteOperatorInputs(const std::vector<std::shared_ptr<OperatorInfo>>& ops, const size_t iter_ops,
Graph::NodeType NewTensor) {
for (size_t iter_input_tensors = 0; iter_input_tensors < ops[iter_ops]->inputs_tensor_info().size();
iter_input_tensors++) {
if (ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape().size() == 4) {
NewTensor.apply.arguments[iter_input_tensors] =
MakeTensor(ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[1],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[2],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[3]);
} else if (ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape().size() == 2) {
NewTensor.apply.arguments[iter_input_tensors] = Complete2DInputs(ops, iter_ops, iter_input_tensors, NewTensor);
} else if (ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape().size() == 1) {
NewTensor.apply.arguments[iter_input_tensors] =
MakeTensor(1, 1, 1, ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0]);
} else if (ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape().size() == 0) {
NewTensor.apply.arguments[iter_input_tensors] = MakeTensor(1, 1, 1, 1);
} else {
MS_LOG(ERROR) << "Tensor's shape is unknown.";
}
}
return NewTensor.apply;
}
void Complete2DInputs(const std::vector<std::shared_ptr<OperatorInfo>>& ops, const size_t iter_ops,
const std::shared_ptr<Graph> graph, const size_t iter_input_tensors,
const size_t current_op_index) {
if (graph->nodes[current_op_index].apply.op_type == OperatorType::kRecMatMul) {
TensorParam Complete2DInputs(const std::vector<std::shared_ptr<OperatorInfo>>& ops, const size_t iter_ops,
const size_t iter_input_tensors, Graph::NodeType NewTensor) {
if (NewTensor.apply.op_type == OperatorType::kRecMatMul) {
auto attrs = ops[iter_ops]->attrs();
bool transpose_a = attrs[TRANSPOSE_A]->cast<BoolImmPtr>()->value();
bool transpose_b = attrs[TRANSPOSE_B]->cast<BoolImmPtr>()->value();
if (transpose_a && (iter_input_tensors == 0)) {
graph->nodes[current_op_index].apply.arguments[iter_input_tensors] =
NewTensor.apply.arguments[iter_input_tensors] =
MakeTensor(1, 1, ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[1],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0]);
} else if (transpose_b && (iter_input_tensors == 1)) {
graph->nodes[current_op_index].apply.arguments[iter_input_tensors] =
NewTensor.apply.arguments[iter_input_tensors] =
MakeTensor(1, 1, ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[1],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0]);
} else {
graph->nodes[current_op_index].apply.arguments[iter_input_tensors] =
NewTensor.apply.arguments[iter_input_tensors] =
MakeTensor(1, 1, ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[1]);
}
} else {
graph->nodes[current_op_index].apply.arguments[iter_input_tensors] =
NewTensor.apply.arguments[iter_input_tensors] =
MakeTensor(1, 1, ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[0],
ops[iter_ops]->inputs_tensor_info()[iter_input_tensors].shape()[1]);
}
}
void MakeEdge(std::shared_ptr<Graph> graph, const size_t input_index, const size_t current_op_index) {
graph->nodes[input_index].node_out.push_back(current_op_index);
graph->nodes[current_op_index].node_in.push_back(input_index);
}
void ModifyTensorToOperator(std::shared_ptr<Graph> graph, const size_t current_op_index, const size_t iter_ops,
std::vector<std::shared_ptr<OperatorInfo>> ops) {
graph->nodes[current_op_index].info = InfoType::kApplication;
std::string op_type = ops[iter_ops]->type();
auto idx = DictOpType.find(op_type);
if (idx == DictOpType.end()) {
graph->nodes[current_op_index].apply.op_type = OperatorType::kRecUnkownType;
MS_LOG(INFO) << "Unknown type in rec_parse_graph::ModifyTensorToOperator";
} else {
graph->nodes[current_op_index].apply.op_type = DictOpType.at(op_type);
}
if ((graph->nodes[current_op_index].apply.op_type == OperatorType::kRecMatMul) ||
(graph->nodes[current_op_index].apply.op_type == OperatorType::kRecBiasAdd) ||
(graph->nodes[current_op_index].apply.op_type == OperatorType::kRecReshape)) {
graph->nodes[current_op_index].tensor_parm = MakeTensor(1, 1, ops[iter_ops]->outputs_tensor_info()[0].shape()[0],
ops[iter_ops]->outputs_tensor_info()[0].shape()[1]);
} else if ((graph->nodes[current_op_index].apply.op_type == OperatorType::kRecSparseSoftmaxCrossEntropyWithLogits) ||
(graph->nodes[current_op_index].apply.op_type == OperatorType::kRecUnkownType)) {
graph->nodes[current_op_index].tensor_parm = MakeTensor(1, 1, 1, 1);
} else {
graph->nodes[current_op_index].tensor_parm = MakeTensor(
ops[iter_ops]->outputs_tensor_info()[0].shape()[0], ops[iter_ops]->outputs_tensor_info()[0].shape()[1],
ops[iter_ops]->outputs_tensor_info()[0].shape()[2], ops[iter_ops]->outputs_tensor_info()[0].shape()[3]);
}
return NewTensor.apply.arguments[iter_input_tensors];
}
std::shared_ptr<Graph> ParseGraph(const std::vector<std::shared_ptr<OperatorInfo>>& ops,
const std::vector<std::vector<std::string>>& input_tensor_names,
const std::shared_ptr<std::vector<size_t>>& ops_nodes_list) {
std::vector<std::string> current_graph;
const std::vector<std::vector<std::string>>& input_tensor_names) {
std::shared_ptr<Graph> graph(new Graph);
if (ops.size() > SIZE_MAX / 2) {
MS_LOG(EXCEPTION) << "Total number of operators is bigger than " << SIZE_MAX / 2;
}
for (size_t iter_ops = ops.size(); iter_ops > 0; iter_ops--) {
if (IsInList(ops[iter_ops - 1]->cnode_name(), current_graph)) {
size_t current_op_index = static_cast<size_t>(std::distance(
current_graph.begin(), std::find(current_graph.begin(), current_graph.end(), ops[iter_ops]->cnode_name())));
std::vector<size_t>::iterator itr = ops_nodes_list->insert(ops_nodes_list->begin(), current_op_index);
if (itr != ops_nodes_list->begin()) {
MS_LOG(EXCEPTION) << "Iterator error.";
}
ModifyTensorToOperator(graph, current_op_index, iter_ops - 1, ops);
LinkOps(graph, ops, input_tensor_names, current_graph, iter_ops - 1, current_op_index);
} else {
Graph::NodeType NewOp = MakeNewOperator(ops, iter_ops - 1);
current_graph.push_back(NewOp.name);
graph->nodes.push_back(NewOp);
size_t current_op_index = graph->nodes.size() - 1;
std::vector<size_t>::iterator itr = ops_nodes_list->insert(ops_nodes_list->begin(), current_op_index);
if (itr != ops_nodes_list->begin()) {
MS_LOG(EXCEPTION) << "Iterator error.";
}
LinkOps(graph, ops, input_tensor_names, current_graph, iter_ops - 1, current_op_index);
}
for (size_t iter_ops = 0; iter_ops < ops.size(); iter_ops++) {
Graph::NodeType NewOp = MakeNewOperator(ops, iter_ops);
graph->nodes.push_back(NewOp);
}
MakeEdge(input_tensor_names, graph);
return graph;
}
void LinkOps(std::shared_ptr<Graph> graph, std::vector<std::shared_ptr<OperatorInfo>> ops,
const std::vector<std::vector<std::string>>& input_tensor_names, std::vector<std::string> current_graph,
const size_t iter_ops, const size_t current_op_index) {
for (size_t iter_input_tensors = 0;
iter_input_tensors < std::min(input_tensor_names[iter_ops].size(), ops[iter_ops]->inputs_tensor_info().size());
iter_input_tensors++) {
std::string input = input_tensor_names[iter_ops][iter_input_tensors];
if (IsInList(input, current_graph)) {
size_t input_index = static_cast<size_t>(
std::distance(current_graph.begin(), std::find(current_graph.begin(), current_graph.end(), input)));
MakeEdge(graph, input_index, current_op_index);
CompleteOperatorInputs(ops, iter_ops, iter_input_tensors, current_op_index, graph);
} else {
Graph::NodeType NewTensor = MakeNewTensor(ops, iter_ops, input, iter_input_tensors, graph, current_op_index);
current_graph.push_back(NewTensor.name);
graph->nodes.push_back(NewTensor);
size_t input_index = graph->nodes.size() - 1;
CompleteOperatorInputs(ops, iter_ops, iter_input_tensors, current_op_index, graph);
MakeEdge(graph, input_index, current_op_index);
}
if (graph->nodes[current_op_index].apply.op_type == OperatorType::kRecBatchNorm) {
break;
void MakeEdge(const std::vector<std::vector<std::string>>& input_tensor_names, std::shared_ptr<Graph> graph) {
for (size_t iter_i = 0; iter_i < input_tensor_names.size(); iter_i++) {
for (size_t iter_j = 1; iter_j < input_tensor_names[iter_i].size(); iter_j++) {
size_t head_node_index = GetIndexInInputTensorNames(input_tensor_names, input_tensor_names[iter_i][iter_j]);
if (head_node_index < SIZE_MAX / 2 && head_node_index != iter_i) {
graph->nodes[iter_i].node_in.push_back(head_node_index);
graph->nodes[head_node_index].node_out.push_back(iter_i);
}
}
}
}
void Eliminate_Aux(const size_t node_index, std::shared_ptr<Graph> graph,
const std::shared_ptr<std::vector<std::vector<size_t>>> eli_list) {
if ((graph->nodes[node_index].apply.op_type == OperatorType::kRecUnkownType) ||
(graph->nodes[node_index].apply.op_type == OperatorType::kRecReLU)) {
size_t input_index = (graph->nodes[node_index].node_in)[0];
std::vector<size_t> outputs = graph->nodes[node_index].node_out;
std::vector<size_t> eli;
eli.push_back(node_index);
eli.push_back(input_index);
for (size_t i = 0; i < outputs.size(); i++) {
eli.push_back(i);
}
eli_list->push_back(eli);
for (size_t i = 1; i < (size_t)graph->nodes[node_index].node_in.size(); i++) {
std::vector<size_t> tmp;
tmp.push_back(node_index);
tmp.push_back((graph->nodes[node_index].node_in)[i]);
eli_list->push_back(tmp);
}
auto it = find(graph->nodes[input_index].node_out.begin(), graph->nodes[input_index].node_out.end(), node_index);
std::vector<size_t>::iterator itr = graph->nodes[input_index].node_out.erase(it);
if (itr != it) {
MS_LOG(EXCEPTION) << "Iterator error.";
}
for (auto output : outputs) {
graph->nodes[input_index].node_out.push_back(output);
}
for (auto& output_index : outputs) {
auto itt = find(graph->nodes[output_index].node_in.begin(), graph->nodes[output_index].node_in.end(), node_index);
graph->nodes[output_index]
.node_in[static_cast<size_t>(std::distance(graph->nodes[output_index].node_in.begin(), itt))] = input_index;
size_t GetIndexInInputTensorNames(const std::vector<std::vector<std::string>>& input_tensor_name,
const std::string& input_name) {
for (size_t index = 0; index < input_tensor_name.size(); index++) {
if (input_tensor_name[index][0] == input_name) {
return index;
}
}
}
std::shared_ptr<Graph> EliminateGraph(const std::shared_ptr<Graph> graph,
std::shared_ptr<std::vector<std::vector<size_t>>> eli_list,
std::shared_ptr<std::vector<size_t>> index_list) {
for (size_t node_index = 0; node_index < (size_t)graph->nodes.size(); node_index++) {
if (graph->nodes[node_index].info == InfoType::kApplication) {
Eliminate_Aux(node_index, graph, eli_list);
}
}
index_list->reserve(graph->nodes.size());
for (size_t i = 0; i < (size_t)graph->nodes.size(); i++) {
index_list->push_back(i);
}
for (size_t i = 0; i < (size_t)eli_list->size(); i++) {
index_list->at((eli_list->at(i)[0])) = SIZE_MAX;
for (size_t j = eli_list->at(i)[0] + 1; j < (size_t)index_list->size(); j++) {
index_list->at(j)--;
}
}
std::shared_ptr<Graph> new_graph(new Graph);
for (size_t i = 0; i < (size_t)(graph->nodes.size() - eli_list->size()); i++) {
Graph::NodeType NewOp;
new_graph->nodes.push_back(NewOp);
}
for (size_t i = 0; i < (size_t)graph->nodes.size(); i++) {
if (index_list->at(i) > SIZE_MAX / 2) continue;
new_graph->nodes[index_list->at(i)] = graph->nodes[i];
for (size_t j = 0; j < (size_t)new_graph->nodes[index_list->at(i)].node_in.size(); j++) {
new_graph->nodes[index_list->at(i)].node_in[j] = index_list->at(new_graph->nodes[index_list->at(i)].node_in[j]);
}
for (size_t j = 0; j < (size_t)new_graph->nodes[index_list->at(i)].node_out.size(); j++) {
new_graph->nodes[index_list->at(i)].node_out[j] = index_list->at(new_graph->nodes[index_list->at(i)].node_out[j]);
}
}
return new_graph;
MS_LOG(INFO) << "Get index failed, using SIZE_MAX insted";
return SIZE_MAX;
}
} // namespace parallel
} // namespace mindspore

View File

@ -43,39 +43,24 @@ const std::map<std::string, OperatorType> DictOpType{
const TensorParam MakeTensor(int n, int c, int h, int w);
bool IsInList(const std::string& name, const std::vector<std::string>& list);
Graph::NodeType MakeNewOperator(std::vector<std::shared_ptr<OperatorInfo>> ops, size_t iter_ops);
Graph::NodeType MakeNewTensor(std::vector<std::shared_ptr<OperatorInfo>> ops, const size_t iter_ops,
const std::string& input, const size_t iter_input_tensors, std::shared_ptr<Graph> graph,
size_t current_op_index);
void Fill2DTensor(const std::vector<std::shared_ptr<OperatorInfo>>& ops, const size_t iter_ops,
const std::shared_ptr<Graph> graph, const size_t iter_input_tensors, const size_t current_op_index,
Graph::NodeType NewTensor);
void CompleteOperatorInputs(std::vector<std::shared_ptr<OperatorInfo>> ops, size_t iter_ops, size_t iter_input_tensors,
size_t current_op_index, std::shared_ptr<Graph> graph);
void Complete2DInputs(const std::vector<std::shared_ptr<OperatorInfo>>& ops, const size_t iter_ops,
const std::shared_ptr<Graph> graph, const size_t iter_input_tensors,
const size_t current_op_index);
void MakeEdge(std::shared_ptr<Graph> graph, const size_t input_index, const size_t current_op_index);
TensorParam Fill2DTensor(const std::vector<std::shared_ptr<OperatorInfo>>& ops, const size_t iter_ops,
Graph::NodeType NewTensor);
void ModifyTensorToOperator(std::shared_ptr<Graph> graph, const size_t current_op_index, const size_t iter_ops,
std::vector<std::shared_ptr<OperatorInfo>> ops);
OperatorRec CompleteOperatorInputs(const std::vector<std::shared_ptr<OperatorInfo>>& ops, const size_t iter_ops,
Graph::NodeType NewTensor);
TensorParam Complete2DInputs(const std::vector<std::shared_ptr<OperatorInfo>>& ops, const size_t iter_ops,
const size_t iter_input_tensor, Graph::NodeType NewTensor);
std::shared_ptr<Graph> ParseGraph(const std::vector<std::shared_ptr<OperatorInfo>>& ops,
const std::vector<std::vector<std::string>>& input_tensor_names,
const std::shared_ptr<std::vector<size_t>>& ops_nodes_list);
const std::vector<std::vector<std::string>>& input_tensor_names);
void LinkOps(std::shared_ptr<Graph> graph, std::vector<std::shared_ptr<OperatorInfo>> ops,
const std::vector<std::vector<std::string>>& input_tensor_names, std::vector<std::string> current_graph,
const size_t iter_ops, const size_t current_op_index);
void MakeEdge(const std::vector<std::vector<std::string>>& input_tensor_names, std::shared_ptr<Graph> graph);
std::shared_ptr<Graph> EliminateGraph(const std::shared_ptr<Graph> graph,
std::shared_ptr<std::vector<std::vector<size_t>>> eli_list,
std::shared_ptr<std::vector<size_t>> index_list);
void Eliminate_Aux(const size_t node_index, std::shared_ptr<Graph> graph,
const std::shared_ptr<std::vector<std::vector<size_t>>> eli_list);
size_t GetIndexInInputTensorNames(const std::vector<std::vector<std::string>>& input_tensor_names,
const std::string& input_name);
} // namespace parallel
} // namespace mindspore
#endif // PARALLEL_AUTO_PARALLEL_REC_PARSE_GRAPH_H_

View File

@ -462,7 +462,6 @@ Status ConstructCostGraphNodes(const std::vector<AnfNodePtr> &all_nodes, const F
// Needed by rec_parser
operator_info->set_type(prim->name());
std::vector<std::string> inputs_tensor_name = ExtractInputsTensorName(cnode);
operator_info->set_cnode_name(cnode->ToString());
entire_costgraph->AddOperator(operator_info);
(void)cnode->set_operator_info(operator_info);
@ -935,9 +934,8 @@ Status ParallelStrategyRecSearch(const std::vector<AnfNodePtr> &all_nodes, const
std::shared_ptr<std::vector<size_t>> index_list(new std::vector<size_t>);
std::shared_ptr<std::vector<std::vector<size_t>>> eli_list(new std::vector<std::vector<size_t>>);
std::shared_ptr<Graph> graph = ParseGraph(ops, input_tensor_names, ops_nodes_list);
std::shared_ptr<Graph> graph = ParseGraph(ops, input_tensor_names);
graph = EliminateGraph(graph, eli_list, index_list);
size_t num_device = g_device_manager->DeviceNum();
if (PartitionForAllDevices(num_device, graph) == SUCCESS) {
MS_LOG(INFO) << "Partition Success With " << num_device << " devices.";