!1341 Added lookup and vocab to mindspore.dataset.text

Merge pull request !1341 from ZiruiWu/vocab_and_lookup
This commit is contained in:
mindspore-ci-bot 2020-05-22 10:19:42 +08:00 committed by Gitee
commit 58e6d7d950
14 changed files with 615 additions and 1 deletions

View File

@ -52,6 +52,7 @@ add_subdirectory(core)
add_subdirectory(kernels) add_subdirectory(kernels)
add_subdirectory(engine) add_subdirectory(engine)
add_subdirectory(api) add_subdirectory(api)
add_subdirectory(nlp)
###################################################################### ######################################################################
################### Create _c_dataengine Library ###################### ################### Create _c_dataengine Library ######################
@ -68,6 +69,8 @@ set(submodules
$<TARGET_OBJECTS:engine-datasetops> $<TARGET_OBJECTS:engine-datasetops>
$<TARGET_OBJECTS:engine-opt> $<TARGET_OBJECTS:engine-opt>
$<TARGET_OBJECTS:engine> $<TARGET_OBJECTS:engine>
$<TARGET_OBJECTS:nlp>
$<TARGET_OBJECTS:nlp-kernels>
) )
if (ENABLE_TDTQUE) if (ENABLE_TDTQUE)

View File

@ -40,6 +40,8 @@
#include "dataset/kernels/data/type_cast_op.h" #include "dataset/kernels/data/type_cast_op.h"
#include "dataset/kernels/text/jieba_tokenizer_op.h" #include "dataset/kernels/text/jieba_tokenizer_op.h"
#include "dataset/kernels/text/unicode_char_tokenizer_op.h" #include "dataset/kernels/text/unicode_char_tokenizer_op.h"
#include "dataset/nlp/vocab.h"
#include "dataset/nlp/kernels/lookup_op.h"
#include "dataset/engine/datasetops/source/cifar_op.h" #include "dataset/engine/datasetops/source/cifar_op.h"
#include "dataset/engine/datasetops/source/image_folder_op.h" #include "dataset/engine/datasetops/source/image_folder_op.h"
#include "dataset/engine/datasetops/source/io_block.h" #include "dataset/engine/datasetops/source/io_block.h"
@ -415,10 +417,13 @@ void bindTensorOps5(py::module *m) {
py::arg("mode") = JiebaMode::kMix) py::arg("mode") = JiebaMode::kMix)
.def("add_word", .def("add_word",
[](JiebaTokenizerOp &self, const std::string word, int freq) { THROW_IF_ERROR(self.AddWord(word, freq)); }); [](JiebaTokenizerOp &self, const std::string word, int freq) { THROW_IF_ERROR(self.AddWord(word, freq)); });
(void)py::class_<UnicodeCharTokenizerOp, TensorOp, std::shared_ptr<UnicodeCharTokenizerOp>>( (void)py::class_<UnicodeCharTokenizerOp, TensorOp, std::shared_ptr<UnicodeCharTokenizerOp>>(
*m, "UnicodeCharTokenizerOp", "Tokenize a scalar tensor of UTF-8 string to Unicode characters.") *m, "UnicodeCharTokenizerOp", "Tokenize a scalar tensor of UTF-8 string to Unicode characters.")
.def(py::init<>()); .def(py::init<>());
(void)py::class_<LookupOp, TensorOp, std::shared_ptr<LookupOp>>(*m, "LookupOp",
"Tensor operation to LookUp each word")
.def(py::init<std::shared_ptr<Vocab>, WordIdType>(), py::arg("vocab"), py::arg("unknown"))
.def(py::init<std::shared_ptr<Vocab>>(), py::arg("vocab"));
} }
void bindSamplerOps(py::module *m) { void bindSamplerOps(py::module *m) {
@ -487,6 +492,27 @@ void bindInfoObjects(py::module *m) {
.def("get_batch_num", &BatchOp::CBatchInfo::get_batch_num); .def("get_batch_num", &BatchOp::CBatchInfo::get_batch_num);
} }
void bindVocabObjects(py::module *m) {
(void)py::class_<Vocab, std::shared_ptr<Vocab>>(*m, "Vocab")
.def_static("from_list",
[](const py::list &words) {
std::shared_ptr<Vocab> v;
THROW_IF_ERROR(Vocab::BuildFromPyList(words, &v));
return v;
})
.def_static("from_file",
[](const std::string &path, const std::string &dlm, int32_t vocab_size) {
std::shared_ptr<Vocab> v;
THROW_IF_ERROR(Vocab::BuildFromFile(path, dlm, vocab_size, &v));
return v;
})
.def_static("from_dict", [](const py::dict &words) {
std::shared_ptr<Vocab> v;
THROW_IF_ERROR(Vocab::BuildFromPyDict(words, &v));
return v;
});
}
// This is where we externalize the C logic as python modules // This is where we externalize the C logic as python modules
PYBIND11_MODULE(_c_dataengine, m) { PYBIND11_MODULE(_c_dataengine, m) {
m.doc() = "pybind11 for _c_dataengine"; m.doc() = "pybind11 for _c_dataengine";
@ -551,6 +577,7 @@ PYBIND11_MODULE(_c_dataengine, m) {
bindSamplerOps(&m); bindSamplerOps(&m);
bindDatasetOps(&m); bindDatasetOps(&m);
bindInfoObjects(&m); bindInfoObjects(&m);
bindVocabObjects(&m);
} }
} // namespace dataset } // namespace dataset
} // namespace mindspore } // namespace mindspore

View File

@ -0,0 +1,7 @@
add_subdirectory(kernels)
add_library(nlp OBJECT
vocab.cc
)
add_dependencies(nlp nlp-kernels)

View File

@ -0,0 +1,3 @@
add_library(nlp-kernels OBJECT
lookup_op.cc
)

View File

@ -0,0 +1,52 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dataset/nlp/kernels/lookup_op.h"
#include <string>
namespace mindspore {
namespace dataset {
LookupOp::LookupOp(std::shared_ptr<Vocab> vocab, WordIdType default_id)
: vocab_(vocab), default_id_(default_id), type_(DataType("int32")) {}
Status LookupOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
RETURN_UNEXPECTED_IF_NULL(vocab_);
CHECK_FAIL_RETURN_UNEXPECTED(input->type() == DataType::DE_STRING, "None String Tensor");
std::vector<WordIdType> word_ids;
word_ids.reserve(input->Size());
for (auto itr = input->begin<std::string_view>(); itr != input->end<std::string_view>(); itr++) {
word_ids.push_back(vocab_->Lookup(std::string(*itr), default_id_));
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, TensorImpl::kFlexible, input->shape(), type_,
reinterpret_cast<unsigned char *>(word_ids.data())));
return Status::OK();
}
Status LookupOp::OutputType(const std::vector<DataType> &inputs, std::vector<DataType> &outputs) {
CHECK_FAIL_RETURN_UNEXPECTED(inputs.size() == NumInput() && outputs.size() == NumOutput(), "size doesn't match");
CHECK_FAIL_RETURN_UNEXPECTED(inputs[0] == DataType::DE_STRING, "None String tensor type");
outputs[0] = type_;
return Status::OK();
}
void LookupOp::Print(std::ostream &out) const {
out << "LookupOp: "
<< "type: " << type_ << "\n default lookup id: " << default_id_ << "\n";
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,62 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef DATASET_NLP_KERNELS_LOOKUP_OP_H_
#define DATASET_NLP_KERNELS_LOOKUP_OP_H_
#include <memory>
#include <vector>
#include <utility>
#include "dataset/core/tensor.h"
#include "dataset/kernels/tensor_op.h"
#include "dataset/util/status.h"
#include "dataset/nlp/vocab.h"
namespace mindspore {
namespace dataset {
class LookupOp : public TensorOp {
public:
// constructor for lookup, takes in a vocab object
// @param std::shared_ptr<Vocab> vocab -
// @param WordIdType default_id, id to lookup if a word is not in vocab
explicit LookupOp(std::shared_ptr<Vocab> vocab, WordIdType default_id = Vocab::kSpecialTokens::unk);
// perform actual lookup on each tensor
// @param const std::shared_ptr<Tensor> &input
// @param std::shared_ptr<Tensor> *output
// @return error code
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;
// print method
// @param std::ostream out
void Print(std::ostream &out) const override;
// @param std::vector<DataType> &inputs -
// @param std::vector<DataType> &outputs -
// @return error code
Status OutputType(const std::vector<DataType> &inputs, std::vector<DataType> &outputs) override;
private:
std::shared_ptr<Vocab> vocab_;
WordIdType default_id_;
DataType type_; // type of tensor after lookup
};
} // namespace dataset
} // namespace mindspore
#endif // DATASET_NLP_KERNELS_LOOKUP_OP_H_

View File

@ -0,0 +1,101 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <map>
#include <utility>
#include "dataset/nlp/vocab.h"
namespace mindspore {
namespace dataset {
Vocab::Vocab(std::unordered_map<WordType, WordIdType> word2id) {
word2id_ = std::move(word2id);
id2word_.resize(word2id_.size());
for (auto p : word2id_) {
id2word_[p.second - kSpecialTokens::num_tokens] = p.first;
}
}
WordIdType Vocab::Lookup(const WordType &word, WordIdType default_id) const {
auto itr = word2id_.find(word);
return itr == word2id_.end() ? default_id : itr->second;
}
WordType Vocab::Lookup(WordIdType id) const {
if (id < kSpecialTokens::num_tokens) {
return reserved_token_str_[id];
} else if (id - kSpecialTokens::num_tokens >= id2word_.size()) {
return reserved_token_str_[kSpecialTokens::unk];
} else {
return id2word_[id - kSpecialTokens::num_tokens];
}
}
Status Vocab::BuildFromPyList(const py::list &words, std::shared_ptr<Vocab> *vocab) {
std::unordered_map<WordType, WordIdType> word2id;
WordIdType word_id = kSpecialTokens::num_tokens;
for (auto word : words) {
const std::string s = py::str(word);
CHECK_FAIL_RETURN_UNEXPECTED(word2id.find(s) == word2id.end(), "duplicate word:" + s);
word2id[s] = word_id++;
}
*vocab = std::make_shared<Vocab>(std::move(word2id));
return Status::OK();
}
Status Vocab::BuildFromFile(const std::string &path, const std::string &delimiter, int32_t vocab_size,
std::shared_ptr<Vocab> *vocab) {
std::unordered_map<WordType, WordIdType> word2id;
WordIdType word_id = kSpecialTokens::num_tokens;
std::fstream handle(path, std::ios::in);
CHECK_FAIL_RETURN_UNEXPECTED(handle.good() && handle.is_open(), "fail to open:" + path);
std::string word;
while (std::getline(handle, word)) {
if (!delimiter.empty()) {
// if delimiter is not found, find_first_of would return std::string::npos which is -1
word = word.substr(0, word.find_first_of(delimiter));
}
CHECK_FAIL_RETURN_UNEXPECTED(word2id.find(word) == word2id.end(), "duplicate word:" + word);
word2id[word] = word_id++;
// break if enough row is read, if vocab_size is smaller than 0
if (word_id == vocab_size + kSpecialTokens::num_tokens) break;
}
*vocab = std::make_shared<Vocab>(std::move(word2id));
return Status::OK();
}
Status Vocab::BuildFromPyDict(const py::dict &words, std::shared_ptr<Vocab> *vocab) {
std::unordered_map<WordType, WordIdType> word2id;
std::map<WordIdType, WordType> id2word;
for (auto p : words) {
WordIdType word_id = py::reinterpret_borrow<py::int_>(p.second);
if (word_id < kSpecialTokens::num_tokens) continue; // skip id that are reserved
std::string word = py::str(p.first);
CHECK_FAIL_RETURN_UNEXPECTED(id2word.find(word_id) == id2word.end(), "duplicate id:" + word);
id2word[word_id] = word;
}
WordIdType cnt = kSpecialTokens::num_tokens;
for (auto p : id2word) {
CHECK_FAIL_RETURN_UNEXPECTED(p.first == cnt++, "word id needs to be continuous starting from 2");
word2id[p.second] = p.first;
}
*vocab = std::make_shared<Vocab>(std::move(word2id));
return Status::OK();
}
const std::vector<WordType> Vocab::reserved_token_str_ = {"<pad>", "<unk>"};
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,88 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef DATASET_NLP_VOCAB_H_
#define DATASET_NLP_VOCAB_H_
#include <string>
#include <memory>
#include <unordered_map>
#include <vector>
#include "dataset/util/status.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
namespace mindspore {
namespace dataset {
namespace py = pybind11;
using WordIdType = int32_t;
using WordType = std::string;
class Vocab {
public:
// Build a vocab from a python dictionary key is each word ,id needs to start from 2, no duplicate and continuous
// @param const py::dict &words - a dictionary containing word, word id pair.
// @param std::shared_ptr<Vocab> *vocab - return value, vocab object
// @return error code
static Status BuildFromPyDict(const py::dict &words, std::shared_ptr<Vocab> *vocab);
// Build a vocab from a python list, id will be assigned automatically, start from 2
// @param const py::list &words - a list of string, used to build vocab, id starts from 2
// @param std::shared_ptr<Vocab> *vocab - return value, vocab object
// @return error code
static Status BuildFromPyList(const py::list &words, std::shared_ptr<Vocab> *vocab);
// Build a vocab from reading a vocab file, id are automatically assigned, start from 2
// @param std::string &path - path to vocab file , each line is assumed to contain 1 word
// @param std::string &delimiter - delimiter to break each line with
// @param int32_t vocab_size - number of words to read from file
// @param std::shared_ptr<Vocab> *vocab - return value, vocab object
// @return error code
static Status BuildFromFile(const std::string &path, const std::string &delimiter, int32_t vocab_size,
std::shared_ptr<Vocab> *vocab);
// Lookup the id of a word, if word doesn't exist in vocab, return default_id
// @param const WordType word - word to look up
// @param WordIdType default_id - word id to return to user when its not in the vocab
// @return WordIdType, word_id
WordIdType Lookup(const WordType &word, WordIdType default_id) const;
// reverse lookup, lookup the word based on its id
// @param WordIdType id - word id to lookup to
// @return WordType the word
WordType Lookup(WordIdType id) const;
// constructor, shouldn't be called directly, can't be private due to std::make_unique()
// @param std::unordered_map<WordType, WordIdType> map - sanitized word2id map
explicit Vocab(std::unordered_map<WordType, WordIdType> map);
// enum type that holds all special tokens, add more if needed
enum kSpecialTokens : WordIdType { pad = 0, unk = 1, num_tokens = 2 };
// reversed lookup table for the reserved tokens
static const std::vector<WordType> reserved_token_str_;
private:
std::unordered_map<WordType, WordIdType> word2id_;
std::vector<WordType> id2word_; // reverse lookup
};
} // namespace dataset
} // namespace mindspore
#endif // DATASET_NLP_VOCAB_H_

View File

@ -0,0 +1,19 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
mindspore.dataset.text
"""
from .c_transforms import *

View File

@ -0,0 +1,77 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
c transforms for all text related operators
"""
import mindspore._c_dataengine as cde
from .validators import check_lookup, check_from_list, check_from_dict, check_from_file
class Vocab(cde.Vocab):
"""
Vocab object that is used for lookup word
Args:
"""
def __init__(self):
pass
@classmethod
@check_from_list
def from_list(cls, word_list):
"""
build a vocab object from a list of word
Args:
word_list(list): a list of string where each element is a word
"""
return super().from_list(word_list)
@classmethod
@check_from_file
def from_file(cls, file_path, delimiter=None, vocab_size=None):
"""
build a vocab object from a list of word
Args:
file_path(str): path to the file which contains the vocab list
delimiter(None, str): a delimiter to break up each line in file, the first element is taken to be the word
vocab_size(None, int): number of words to read from file_path
"""
return super().from_file(file_path, delimiter, vocab_size)
@classmethod
@check_from_dict
def from_dict(cls, word_dict):
"""
build a vocab object from a dict.
Args:
word_dict(dict): dict contains word, id pairs. id should start from 2 and continuous
"""
return super().from_dict(word_dict)
class Lookup(cde.LookupOp):
"""
Lookup operator that looks up a word to an id
Args:
vocab(Vocab): a Vocab object
unknown(None,int): default id to lookup a word that is out of vocab
"""
@check_lookup
def __init__(self, vocab, unknown=None):
if unknown is None:
super().__init__(vocab)
else:
super().__init__(vocab, unknown)

View File

@ -0,0 +1,108 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
validators for text ops
"""
from functools import wraps
import mindspore._c_dataengine as cde
def check_lookup(method):
"""A wrapper that wrap a parameter checker to the original function(crop operation)."""
@wraps(method)
def new_method(self, *args, **kwargs):
vocab, unknown = (list(args) + 2 * [None])[:2]
if "vocab" in kwargs:
vocab = kwargs.get("vocab")
if "unknown" in kwargs:
unknown = kwargs.get("unknown")
if unknown is not None:
assert isinstance(unknown, int) and unknown >= 0, "unknown needs to be a non-negative integer"
assert isinstance(vocab, cde.Vocab), "vocab is not an instance of cde.Vocab"
kwargs["vocab"] = vocab
kwargs["unknown"] = unknown
return method(self, **kwargs)
return new_method
def check_from_file(method):
"""A wrapper that wrap a parameter checker to the original function(crop operation)."""
@wraps(method)
def new_method(self, *args, **kwargs):
file_path, delimiter, vocab_size = (list(args) + 3 * [None])[:3]
if "file_path" in kwargs:
file_path = kwargs.get("file_path")
if "delimiter" in kwargs:
delimiter = kwargs.get("delimiter")
if "vocab_size" in kwargs:
vocab_size = kwargs.get("vocab_size")
assert isinstance(file_path, str), "file_path needs to be str"
if delimiter is not None:
assert isinstance(delimiter, str), "delimiter needs to be str"
else:
delimiter = ""
if vocab_size is not None:
assert isinstance(vocab_size, int) and vocab_size > 0, "vocab size needs to be a positive integer"
else:
vocab_size = -1
kwargs["file_path"] = file_path
kwargs["delimiter"] = delimiter
kwargs["vocab_size"] = vocab_size
return method(self, **kwargs)
return new_method
def check_from_list(method):
"""A wrapper that wrap a parameter checker to the original function(crop operation)."""
@wraps(method)
def new_method(self, *args, **kwargs):
word_list, = (list(args) + [None])[:1]
if "word_list" in kwargs:
word_list = kwargs.get("word_list")
assert isinstance(word_list, list), "word_list needs to be a list of words"
for word in word_list:
assert isinstance(word, str), "each word in word list needs to be type str"
kwargs["word_list"] = word_list
return method(self, **kwargs)
return new_method
def check_from_dict(method):
"""A wrapper that wrap a parameter checker to the original function(crop operation)."""
@wraps(method)
def new_method(self, *args, **kwargs):
word_dict, = (list(args) + [None])[:1]
if "word_dict" in kwargs:
word_dict = kwargs.get("word_dict")
assert isinstance(word_dict, dict), "word_dict needs to be a list of word,id pairs"
for word, word_id in word_dict.items():
assert isinstance(word, str), "each word in word_dict needs to be type str"
assert isinstance(word_id, int) and word_id >= 0, "each word id needs to be positive integer"
kwargs["word_dict"] = word_dict
return method(self, **kwargs)
return new_method

View File

@ -0,0 +1,14 @@
not,1
all,2
those,3
who,4
wonder,5
are,6
lost,7
Tolkein,8
home,9
is,10
behind,11
world,12
ahead,13
the,14

View File

@ -0,0 +1,6 @@
home
is
behind
the
world
ahead

View File

@ -0,0 +1,47 @@
import mindspore.dataset as ds
import mindspore.dataset.text as text
# this file contains "home is behind the world head" each word is 1 line
DATA_FILE = "../data/dataset/testVocab/words.txt"
VOCAB_FILE = "../data/dataset/testVocab/vocab_list.txt"
def test_from_list():
vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "))
lookup = text.Lookup(vocab)
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
data = data.map(input_columns=["text"], operations=lookup)
ind = 0
res = [2, 1, 4, 5, 6, 7]
for d in data.create_dict_iterator():
assert d["text"] == res[ind], ind
ind += 1
def test_from_file():
vocab = text.Vocab.from_file(VOCAB_FILE, ",")
lookup = text.Lookup(vocab)
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
data = data.map(input_columns=["text"], operations=lookup)
ind = 0
res = [10, 11, 12, 15, 13, 14]
for d in data.create_dict_iterator():
assert d["text"] == res[ind], ind
ind += 1
def test_from_dict():
vocab = text.Vocab.from_dict({"home": 3, "behind": 2, "the": 4, "world": 5, "<unk>": 6})
lookup = text.Lookup(vocab, 6) # default value is -1
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
data = data.map(input_columns=["text"], operations=lookup)
res = [3, 6, 2, 4, 5, 6]
ind = 0
for d in data.create_dict_iterator():
assert d["text"] == res[ind], ind
ind += 1
if __name__ == '__main__':
test_from_list()
test_from_file()
test_from_dict()