diff --git a/model_zoo/official/cv/faster_rcnn/README_CN.md b/model_zoo/official/cv/faster_rcnn/README_CN.md index a27670b57a1..ce15ea04378 100644 --- a/model_zoo/official/cv/faster_rcnn/README_CN.md +++ b/model_zoo/official/cv/faster_rcnn/README_CN.md @@ -52,7 +52,7 @@ Faster R-CNN是一个两阶段目标检测网络,该网络采用RPN,可以 - 使用Ascend处理器来搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。 - 获取基础镜像 - - [Ascend Hub](ascend.huawei.com/ascendhub/#/home) + - [Ascend Hub](https://ascend.huawei.com/ascendhub/#/home) - 安装[MindSpore](https://www.mindspore.cn/install)。 @@ -114,7 +114,7 @@ sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] #推理 -sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] +sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] [DEVICE_ID] ``` # 在docker上运行 @@ -154,7 +154,7 @@ sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] ```shell # 推理 -sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] +sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] [DEVICE_ID] ``` # 脚本说明 @@ -300,7 +300,7 @@ python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_ ```shell # Ascend310 inference -sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] +sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] [DEVICE_ID] ``` ### 结果 @@ -341,7 +341,7 @@ sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] | 速度 | 1卡:190毫秒/步;8卡:200毫秒/步 | | 总时间 | 1卡:37.17小时;8卡:4.89小时 | | 参数(M) | 250 | -| 脚本 | [Faster R-CNN脚本](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/office/cv/faster_rcnn) | +| 脚本 | [Faster R-CNN脚本](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/faster_rcnn) | ### 评估性能