forked from mindspore-Ecosystem/mindspore
mobilenetv2 add incremental learning func
This commit is contained in:
parent
738ade501d
commit
4e2ccefe29
|
@ -4,23 +4,22 @@
|
|||
- [Model Architecture](#model-architecture)
|
||||
- [Dataset](#dataset)
|
||||
- [Features](#features)
|
||||
- [Mixed Precision](#mixed-precision)
|
||||
- [Mixed Precision](#mixed-precision)
|
||||
- [Environment Requirements](#environment-requirements)
|
||||
- [Script Description](#script-description)
|
||||
- [Script and Sample Code](#script-and-sample-code)
|
||||
- [Script and Sample Code](#script-and-sample-code)
|
||||
- [Training Process](#training-process)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Evaluation](#evaluation)
|
||||
- [Evaluation](#evaluation)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Training Performance](#evaluation-performance)
|
||||
- [Inference Performance](#evaluation-performance)
|
||||
- [Performance](#performance)
|
||||
- [Training Performance](#evaluation-performance)
|
||||
- [Inference Performance](#evaluation-performance)
|
||||
- [Description of Random Situation](#description-of-random-situation)
|
||||
- [ModelZoo Homepage](#modelzoo-homepage)
|
||||
|
||||
# [MobileNetV2 Description](#contents)
|
||||
|
||||
|
||||
MobileNetV2 is tuned to mobile phone CPUs through a combination of hardware- aware network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through novel architecture advances.Nov 20, 2019.
|
||||
|
||||
[Paper](https://arxiv.org/pdf/1905.02244) Howard, Andrew, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang et al. "Searching for MobileNetV2." In Proceedings of the IEEE International Conference on Computer Vision, pp. 1314-1324. 2019.
|
||||
|
@ -36,78 +35,103 @@ The overall network architecture of MobileNetV2 is show below:
|
|||
Dataset used: [imagenet](http://www.image-net.org/)
|
||||
|
||||
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
||||
- Train: 120G, 1.2W images
|
||||
- Test: 5G, 50000 images
|
||||
- Train: 120G, 1.2W images
|
||||
- Test: 5G, 50000 images
|
||||
- Data format: RGB images.
|
||||
- Note: Data will be processed in src/dataset.py
|
||||
|
||||
- Note: Data will be processed in src/dataset.py
|
||||
|
||||
# [Features](#contents)
|
||||
|
||||
## [Mixed Precision(Ascend)](#contents)
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
||||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Hardware(Ascend/GPU/CPU)
|
||||
- Prepare hardware environment with Ascend、GPU or CPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
||||
|
||||
# [Script description](#contents)
|
||||
|
||||
## [Script and sample code](#contents)
|
||||
|
||||
```python
|
||||
├── MobileNetV2
|
||||
├── Readme.md # descriptions about MobileNetV2
|
||||
├── scripts
|
||||
│ ├──run_train.sh # shell script for train
|
||||
│ ├──run_eval.sh # shell script for evaluation
|
||||
├── src
|
||||
│ ├──config.py # parameter configuration
|
||||
├── MobileNetV2
|
||||
├── README.md # descriptions about MobileNetV2
|
||||
├── scripts
|
||||
│ ├──run_train.sh # shell script for train, fine_tune or incremental learn with CPU, GPU or Ascend
|
||||
│ ├──run_eval.sh # shell script for evaluation with CPU, GPU or Ascend
|
||||
├── src
|
||||
│ ├──args.py # parse args
|
||||
│ ├──config.py # parameter configuration
|
||||
│ ├──dataset.py # creating dataset
|
||||
│ ├──launch.py # start python script
|
||||
│ ├──lr_generator.py # learning rate config
|
||||
│ ├──lr_generator.py # learning rate config
|
||||
│ ├──mobilenetV2.py # MobileNetV2 architecture
|
||||
│ ├──models.py # contain define_net and Loss, Monitor
|
||||
│ ├──utils.py # utils to load ckpt_file for fine tune or incremental learn
|
||||
├── train.py # training script
|
||||
├── eval.py # evaluation script
|
||||
├── eval.py # evaluation script
|
||||
```
|
||||
|
||||
## [Training process](#contents)
|
||||
|
||||
### Usage
|
||||
|
||||
|
||||
You can start training using python or shell scripts. The usage of shell scripts as follows:
|
||||
|
||||
- Ascend: sh run_train.sh Ascend [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [RANK_TABLE_FILE] [DATASET_PATH] [CKPT_PATH]
|
||||
- GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]
|
||||
- Ascend: sh run_train.sh Ascend [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [RANK_TABLE_FILE] [DATASET_PATH] [TRAIN_METHOD] [CKPT_PATH]
|
||||
- GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [TRAIN_METHOD] [CKPT_PATH]
|
||||
- CPU: sh run_trian.sh CPU [DATASET_PATH] [TRAIN_METHOD] [CKPT_PATH]
|
||||
|
||||
### Launch
|
||||
|
||||
```
|
||||
```
|
||||
# training example
|
||||
python:
|
||||
Ascend: python train.py --dataset_path ~/imagenet/train/ --device_targe Ascend
|
||||
GPU: python train.py --dataset_path ~/imagenet/train/ --device_targe GPU
|
||||
Ascend: python train.py --dataset_path ~/imagenet/train/ --platform Ascend --train_method train
|
||||
GPU: python train.py --dataset_path ~/imagenet/train/ --platform GPU --train_method train
|
||||
CPU: python train.py --dataset_path ~/imagenet/train/ --platform CPU --train_method train
|
||||
|
||||
shell:
|
||||
Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json ~/imagenet/train/ mobilenet_199.ckpt
|
||||
GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/
|
||||
Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json ~/imagenet/train/ train
|
||||
GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/ train
|
||||
CPU: sh run_train.sh CPU ~/imagenet/train/ train
|
||||
|
||||
# fine tune example
|
||||
python:
|
||||
Ascend: python train.py --dataset_path ~/imagenet/train/ --platform Ascend --train_method fine_tune ./pretrain_checkpoint/mobilenetv2_199.ckpt
|
||||
GPU: python train.py --dataset_path ~/imagenet/train/ --platform GPU --train_method fine_tune ./pretrain_checkpoint/mobilenetv2_199.ckpt
|
||||
CPU: python train.py --dataset_path ~/imagenet/train/ --platform CPU --train_method fine_tune ./pretrain_checkpoint/mobilenetv2_199.ckpt
|
||||
|
||||
shell:
|
||||
Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json ~/imagenet/train/ fine_tune ./pretrain_checkpoint/mobilenetv2_199.ckpt
|
||||
GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/ fine_tune ./pretrain_checkpoint/mobilenetv2_199.ckpt
|
||||
CPU: sh run_train.sh CPU ~/imagenet/train/ fine_tune ./pretrain_checkpoint/mobilenetv2_199.ckpt
|
||||
|
||||
# incremental learn example
|
||||
python:
|
||||
Ascend: python train.py --dataset_path ~/imagenet/train/ --platform Ascend --train_method incremental_learn ./pretrain_checkpoint/mobilenetv2_199.ckpt
|
||||
GPU: python train.py --dataset_path ~/imagenet/train/ --platform GPU --train_method incremental_learn ./pretrain_checkpoint/mobilenetv2_199.ckpt
|
||||
CPU: python train.py --dataset_path ~/imagenet/train/ --platform CPU --train_method incremental_learn ./pretrain_checkpoint/mobilenetv2_199.ckpt
|
||||
|
||||
shell:
|
||||
Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json ~/imagenet/train/ incremental_learn ./pretrain_checkpoint/mobilenetv2_199.ckpt
|
||||
GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/ incremental_learn ./pretrain_checkpoint/mobilenetv2_199.ckpt
|
||||
CPU: sh run_train.sh CPU ~/imagenet/train/ incremental_learn ./pretrain_checkpoint/mobilenetv2_199.ckpt
|
||||
```
|
||||
|
||||
### Result
|
||||
|
||||
Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./train/train.log` like followings.
|
||||
Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./train/train.log` like followings.
|
||||
|
||||
```
|
||||
```
|
||||
epoch: [ 0/200], step:[ 624/ 625], loss:[5.258/5.258], time:[140412.236], lr:[0.100]
|
||||
epoch time: 140522.500, per step time: 224.836, avg loss: 5.258
|
||||
epoch: [ 1/200], step:[ 624/ 625], loss:[3.917/3.917], time:[138221.250], lr:[0.200]
|
||||
|
@ -120,29 +144,32 @@ epoch time: 138331.250, per step time: 221.330, avg loss: 3.917
|
|||
|
||||
You can start training using python or shell scripts. The usage of shell scripts as follows:
|
||||
|
||||
- Ascend: sh run_infer.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
- GPU: sh run_infer.sh GPU [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
- Ascend: sh run_infer.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH] [HEAD_CKPT_PATH]
|
||||
- GPU: sh run_infer.sh GPU [DATASET_PATH] [CHECKPOINT_PATH] [HEAD_CKPT_PATH]
|
||||
- CPU: sh run_infer.sh CPU [DATASET_PATH] [BACKBONE_CKPT_PATH] [HEAD_CKPT_PATH]
|
||||
|
||||
### Launch
|
||||
|
||||
```
|
||||
```
|
||||
# infer example
|
||||
python:
|
||||
Ascend: python eval.py --dataset_path ~/imagenet/val/ --checkpoint_path mobilenet_199.ckpt --device_targe Ascend
|
||||
GPU: python eval.py --dataset_path ~/imagenet/val/ --checkpoint_path mobilenet_199.ckpt --device_targe GPU
|
||||
Ascend: python eval.py --dataset_path ~/imagenet/val/ --pretrain_ckpt ~/train/mobilenet-200_625.ckpt --platform Ascend --head_ckpt ./checkpoint/mobilenetv2_199.ckpt
|
||||
GPU: python eval.py --dataset_path ~/imagenet/val/ --pretrain_ckpt ~/train/mobilenet-200_625.ckpt --platform GPU --head_ckpt ./checkpoint/mobilenetv2_199.ckpt
|
||||
CPU: python eval.py --dataset_path ~/imagenet/val/ --pretrain_ckpt ~/train/mobilenet-200_625.ckpt --platform CPU --head_ckpt ./checkpoint/mobilenetv2_199.ckpt
|
||||
|
||||
shell:
|
||||
Ascend: sh run_infer.sh Ascend ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt
|
||||
GPU: sh run_infer.sh GPU ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt
|
||||
Ascend: sh run_infer.sh Ascend ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt ./checkpoint/mobilenetv2_199.ckpt
|
||||
GPU: sh run_infer.sh GPU ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt ./checkpoint/mobilenetv2_199.ckpt
|
||||
CPU: sh run_infer.sh GPU ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt ./checkpoint/mobilenetv2_199.ckpt
|
||||
```
|
||||
|
||||
> checkpoint can be produced in training process.
|
||||
> checkpoint can be produced in training process.
|
||||
|
||||
### Result
|
||||
|
||||
Inference result will be stored in the example path, you can find result like the followings in `val.log`.
|
||||
Inference result will be stored in the example path, you can find result like the followings in `val.log`.
|
||||
|
||||
```
|
||||
```
|
||||
result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.ckpt
|
||||
```
|
||||
|
||||
|
@ -177,7 +204,7 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.
|
|||
| Model Version | V1 | | |
|
||||
| Resource | Ascend 910 | NV SMX2 V100-32G | Ascend 310 |
|
||||
| uploaded Date | 05/06/2020 | 05/22/2020 | |
|
||||
| MindSpore Version | 0.2.0 | 0.2.0 | 0.2.0 |
|
||||
| MindSpore Version | 0.2.0 | 0.2.0 | 0.2.0 |
|
||||
| Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |
|
||||
| batch_size | | 130(8P) | |
|
||||
| outputs | | | |
|
||||
|
@ -191,6 +218,5 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.
|
|||
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
|
||||
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
|
@ -15,63 +15,43 @@
|
|||
"""
|
||||
eval.
|
||||
"""
|
||||
import os
|
||||
import argparse
|
||||
from mindspore import context
|
||||
from mindspore import nn
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
from src.dataset import create_dataset
|
||||
from src.config import config_ascend, config_gpu
|
||||
from src.mobilenetV2 import mobilenet_v2
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||
parser.add_argument('--device_target', type=str, default=None, help='run device_target')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
from src.config import set_config
|
||||
from src.mobilenetV2 import MobileNetV2Backbone, MobileNetV2Head, mobilenet_v2
|
||||
from src.args import eval_parse_args
|
||||
from src.models import load_ckpt
|
||||
from src.utils import switch_precision, set_context
|
||||
|
||||
if __name__ == '__main__':
|
||||
config = None
|
||||
net = None
|
||||
if args_opt.device_target == "Ascend":
|
||||
config = config_ascend
|
||||
device_id = int(os.getenv('DEVICE_ID', '0'))
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
|
||||
device_id=device_id, save_graphs=False)
|
||||
net = mobilenet_v2(num_classes=config.num_classes, device_target="Ascend")
|
||||
elif args_opt.device_target == "GPU":
|
||||
config = config_gpu
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target="GPU", save_graphs=False)
|
||||
net = mobilenet_v2(num_classes=config.num_classes, device_target="GPU")
|
||||
args_opt = eval_parse_args()
|
||||
config = set_config(args_opt)
|
||||
|
||||
backbone_net = MobileNetV2Backbone(platform=args_opt.platform)
|
||||
head_net = MobileNetV2Head(input_channel=backbone_net.out_channels, num_classes=config.num_classes)
|
||||
net = mobilenet_v2(backbone_net, head_net)
|
||||
|
||||
#load the trained checkpoint file to the net for evaluation
|
||||
if args_opt.head_ckpt:
|
||||
load_ckpt(backbone_net, args_opt.pretrain_ckpt)
|
||||
load_ckpt(head_net, args_opt.head_ckpt)
|
||||
else:
|
||||
raise ValueError("Unsupported device_target.")
|
||||
load_ckpt(net, args_opt.pretrain_ckpt)
|
||||
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(
|
||||
is_grad=False, sparse=True, reduction='mean')
|
||||
set_context(config)
|
||||
switch_precision(net, mstype.float16, config)
|
||||
|
||||
if args_opt.device_target == "Ascend":
|
||||
net.to_float(mstype.float16)
|
||||
for _, cell in net.cells_and_names():
|
||||
if isinstance(cell, nn.Dense):
|
||||
cell.to_float(mstype.float32)
|
||||
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=False,
|
||||
config=config,
|
||||
device_target=args_opt.device_target,
|
||||
batch_size=config.batch_size)
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, config=config)
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
if args_opt.checkpoint_path:
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
model = Model(net, loss_fn=loss, metrics={'acc'})
|
||||
res = model.eval(dataset)
|
||||
print("result:", res, "ckpt=", args_opt.checkpoint_path)
|
||||
|
||||
res = model.eval(dataset, dataset_sink_mode=False)
|
||||
print(f"result:{res}\npretrain_ckpt={args_opt.pretrain_ckpt}")
|
||||
if args_opt.head_ckpt:
|
||||
print(f"head_ckpt={args_opt.head_ckpt}")
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import argparse
|
||||
import ast
|
||||
|
||||
def launch_parse_args():
|
||||
|
||||
launch_parser = argparse.ArgumentParser(description="mindspore distributed training launch helper utilty \
|
||||
that will spawn up multiple distributed processes")
|
||||
launch_parser.add_argument('--platform', type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"), \
|
||||
help='run platform, only support GPU, CPU and Ascend')
|
||||
launch_parser.add_argument("--nproc_per_node", type=int, default=1, choices=(1, 2, 3, 4, 5, 6, 7, 8), \
|
||||
help="The number of processes to launch on each node, for D training, this is recommended to be set \
|
||||
to the number of D in your system so that each process can be bound to a single D.")
|
||||
launch_parser.add_argument("--visible_devices", type=str, default="0,1,2,3,4,5,6,7", help="will use the \
|
||||
visible devices sequentially")
|
||||
launch_parser.add_argument("--training_script", type=str, default="./train.py", help="The full path to \
|
||||
the single D training program/script to be launched in parallel, followed by all the arguments for \
|
||||
the training script")
|
||||
|
||||
launch_args, unknown = launch_parser.parse_known_args()
|
||||
launch_args.training_script_args = unknown
|
||||
launch_args.training_script_args += ["--platform", launch_args.platform]
|
||||
return launch_args
|
||||
|
||||
def train_parse_args():
|
||||
train_parser = argparse.ArgumentParser(description='Image classification trian')
|
||||
train_parser.add_argument('--dataset_path', type=str, required=True, help='Dataset path')
|
||||
train_parser.add_argument('--platform', type=str, default="Ascend", choices=("CPU", "GPU", "Ascend"), \
|
||||
help='run platform, only support CPU, GPU and Ascend')
|
||||
train_parser.add_argument('--pretrain_ckpt', type=str, default=None, help='Pretrained checkpoint path \
|
||||
for fine tune or incremental learning')
|
||||
train_parser.add_argument('--run_distribute', type=ast.literal_eval, default=True, help='Run distribute')
|
||||
train_parser.add_argument('--train_method', type=str, required=True, choices=("train", "fine_tune", \
|
||||
"incremental_learn"), help="\"fine_tune\"or \"incremental_learn\" if to fine tune the net after \
|
||||
loading the ckpt, \"train\" to train from initialization model")
|
||||
|
||||
train_args = train_parser.parse_args()
|
||||
return train_args
|
||||
|
||||
def eval_parse_args():
|
||||
eval_parser = argparse.ArgumentParser(description='Image classification eval')
|
||||
eval_parser.add_argument('--dataset_path', type=str, required=True, help='Dataset path')
|
||||
eval_parser.add_argument('--platform', type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"), \
|
||||
help='run platform, only support GPU, CPU and Ascend')
|
||||
eval_parser.add_argument('--pretrain_ckpt', type=str, default=None, help='Pretrained checkpoint path \
|
||||
for fine tune or incremental learning')
|
||||
eval_parser.add_argument('--head_ckpt', type=str, default=None, help='Pretrained checkpoint path \
|
||||
for fine tune or incremental learning')
|
||||
eval_parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
|
||||
|
||||
eval_args = eval_parser.parse_args()
|
||||
|
||||
return eval_args
|
||||
|
|
@ -15,40 +15,82 @@
|
|||
"""
|
||||
network config setting, will be used in train.py and eval.py
|
||||
"""
|
||||
import os
|
||||
from easydict import EasyDict as ed
|
||||
|
||||
config_ascend = ed({
|
||||
"num_classes": 1000,
|
||||
"image_height": 224,
|
||||
"image_width": 224,
|
||||
"batch_size": 256,
|
||||
"epoch_size": 200,
|
||||
"warmup_epochs": 4,
|
||||
"lr": 0.4,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 4e-5,
|
||||
"label_smooth": 0.1,
|
||||
"loss_scale": 1024,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 1,
|
||||
"keep_checkpoint_max": 200,
|
||||
"save_checkpoint_path": "./checkpoint",
|
||||
})
|
||||
def set_config(args):
|
||||
config_cpu = ed({
|
||||
"num_classes": 26,
|
||||
"image_height": 224,
|
||||
"image_width": 224,
|
||||
"batch_size": 150,
|
||||
"epoch_size": 15,
|
||||
"warmup_epochs": 0,
|
||||
"lr_init": .0,
|
||||
"lr_end": 0.03,
|
||||
"lr_max": 0.03,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 4e-5,
|
||||
"label_smooth": 0.1,
|
||||
"loss_scale": 1024,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 1,
|
||||
"keep_checkpoint_max": 20,
|
||||
"save_checkpoint_path": "./checkpoint",
|
||||
"platform": args.platform
|
||||
})
|
||||
config_gpu = ed({
|
||||
"num_classes": 1000,
|
||||
"image_height": 224,
|
||||
"image_width": 224,
|
||||
"batch_size": 150,
|
||||
"epoch_size": 200,
|
||||
"warmup_epochs": 0,
|
||||
"lr_init": .0,
|
||||
"lr_end": .0,
|
||||
"lr_max": 0.8,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 4e-5,
|
||||
"label_smooth": 0.1,
|
||||
"loss_scale": 1024,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 1,
|
||||
"keep_checkpoint_max": 200,
|
||||
"save_checkpoint_path": "./checkpoint",
|
||||
"platform": args.platform,
|
||||
"ccl": "nccl",
|
||||
"run_distribute": args.run_distribute
|
||||
})
|
||||
config_ascend = ed({
|
||||
"num_classes": 1000,
|
||||
"image_height": 224,
|
||||
"image_width": 224,
|
||||
"batch_size": 256,
|
||||
"epoch_size": 200,
|
||||
"warmup_epochs": 4,
|
||||
"lr_init": 0.00,
|
||||
"lr_end": 0.00,
|
||||
"lr_max": 0.4,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 4e-5,
|
||||
"label_smooth": 0.1,
|
||||
"loss_scale": 1024,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 1,
|
||||
"keep_checkpoint_max": 200,
|
||||
"save_checkpoint_path": "./checkpoint",
|
||||
"platform": args.platform,
|
||||
"ccl": "hccl",
|
||||
"device_id": int(os.getenv('DEVICE_ID', '0')),
|
||||
"rank_id": int(os.getenv('RANK_ID', '0')),
|
||||
"rank_size": int(os.getenv('RANK_SIZE', '1')),
|
||||
"run_distribute": int(os.getenv('RANK_SIZE', '1')) > 1.
|
||||
})
|
||||
config = ed({"CPU": config_cpu,
|
||||
"GPU": config_gpu,
|
||||
"Ascend": config_ascend})
|
||||
|
||||
config_gpu = ed({
|
||||
"num_classes": 1000,
|
||||
"image_height": 224,
|
||||
"image_width": 224,
|
||||
"batch_size": 150,
|
||||
"epoch_size": 200,
|
||||
"warmup_epochs": 0,
|
||||
"lr": 0.8,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 4e-5,
|
||||
"label_smooth": 0.1,
|
||||
"loss_scale": 1024,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 1,
|
||||
"keep_checkpoint_max": 200,
|
||||
"save_checkpoint_path": "./checkpoint",
|
||||
})
|
||||
if args.platform not in config.keys():
|
||||
raise ValueError("Unsupport platform.")
|
||||
|
||||
return config[args.platform]
|
||||
|
|
|
@ -16,41 +16,51 @@
|
|||
create train or eval dataset.
|
||||
"""
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor
|
||||
from mindspore.train.model import Model
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.transforms.vision.c_transforms as C
|
||||
import mindspore.dataset.transforms.c_transforms as C2
|
||||
|
||||
def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1, batch_size=32):
|
||||
|
||||
def create_dataset(dataset_path, do_train, config, repeat_num=1):
|
||||
"""
|
||||
create a train or eval dataset
|
||||
|
||||
Args:
|
||||
dataset_path(string): the path of dataset.
|
||||
do_train(bool): whether dataset is used for train or eval.
|
||||
config(struct): the config of train and eval in diffirent platform.
|
||||
repeat_num(int): the repeat times of dataset. Default: 1.
|
||||
batch_size(int): the batch size of dataset. Default: 32.
|
||||
|
||||
|
||||
Returns:
|
||||
dataset
|
||||
"""
|
||||
if device_target == "Ascend":
|
||||
if config.platform == "Ascend":
|
||||
rank_size = int(os.getenv("RANK_SIZE", '1'))
|
||||
rank_id = int(os.getenv("RANK_ID", '0'))
|
||||
if rank_size == 1:
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
|
||||
else:
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
|
||||
num_shards=rank_size, shard_id=rank_id)
|
||||
elif device_target == "GPU":
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,\
|
||||
num_shards=rank_size, shard_id=rank_id)
|
||||
elif config.platform == "GPU":
|
||||
if do_train:
|
||||
from mindspore.communication.management import get_rank, get_group_size
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
|
||||
num_shards=get_group_size(), shard_id=get_rank())
|
||||
if config.run_distribute:
|
||||
from mindspore.communication.management import get_rank, get_group_size
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,\
|
||||
num_shards=get_group_size(), shard_id=get_rank())
|
||||
else:
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
|
||||
else:
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
|
||||
else:
|
||||
raise ValueError("Unsupported device_target.")
|
||||
elif config.platform == "CPU":
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
|
||||
|
||||
resize_height = config.image_height
|
||||
resize_width = config.image_width
|
||||
|
@ -64,7 +74,8 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
|
|||
resize_op = C.Resize((256, 256))
|
||||
center_crop = C.CenterCrop(resize_width)
|
||||
rescale_op = C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4)
|
||||
normalize_op = C.Normalize(mean=[0.485*255, 0.456*255, 0.406*255], std=[0.229*255, 0.224*255, 0.225*255])
|
||||
normalize_op = C.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
|
||||
std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
|
||||
change_swap_op = C.HWC2CHW()
|
||||
|
||||
if do_train:
|
||||
|
@ -74,16 +85,43 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
|
|||
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
|
||||
ds = ds.map(input_columns="image", operations=trans, num_parallel_workers=8)
|
||||
ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8)
|
||||
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
|
||||
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
|
||||
|
||||
# apply shuffle operations
|
||||
ds = ds.shuffle(buffer_size=buffer_size)
|
||||
|
||||
# apply batch operations
|
||||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
ds = ds.batch(config.batch_size, drop_remainder=True)
|
||||
|
||||
# apply dataset repeat operation
|
||||
ds = ds.repeat(repeat_num)
|
||||
|
||||
return ds
|
||||
|
||||
|
||||
def extract_features(net, dataset_path, config):
|
||||
features_folder = dataset_path + '_features'
|
||||
if not os.path.exists(features_folder):
|
||||
os.makedirs(features_folder)
|
||||
dataset = create_dataset(dataset_path=dataset_path,
|
||||
do_train=False,
|
||||
config=config,
|
||||
repeat_num=1)
|
||||
step_size = dataset.get_dataset_size()
|
||||
pbar = tqdm(list(dataset.create_dict_iterator()))
|
||||
model = Model(net)
|
||||
i = 0
|
||||
for data in pbar:
|
||||
features_path = os.path.join(features_folder, f"feature_{i}.npy")
|
||||
label_path = os.path.join(features_folder, f"label_{i}.npy")
|
||||
if not (os.path.exists(features_path) and os.path.exists(label_path)):
|
||||
image = data["image"]
|
||||
label = data["label"]
|
||||
features = model.predict(Tensor(image))
|
||||
np.save(features_path, features.asnumpy())
|
||||
np.save(label_path, label)
|
||||
pbar.set_description("Process dataset batch: %d" % (i + 1))
|
||||
i += 1
|
||||
|
||||
return step_size
|
||||
|
|
|
@ -17,44 +17,11 @@ import os
|
|||
import sys
|
||||
import subprocess
|
||||
import shutil
|
||||
from argparse import ArgumentParser
|
||||
|
||||
def parse_args():
|
||||
"""
|
||||
parse args .
|
||||
|
||||
Args:
|
||||
|
||||
Returns:
|
||||
args.
|
||||
|
||||
Examples:
|
||||
>>> parse_args()
|
||||
"""
|
||||
parser = ArgumentParser(description="mindspore distributed training launch "
|
||||
"helper utilty that will spawn up "
|
||||
"multiple distributed processes")
|
||||
parser.add_argument("--nproc_per_node", type=int, default=1,
|
||||
help="The number of processes to launch on each node, "
|
||||
"for D training, this is recommended to be set "
|
||||
"to the number of D in your system so that "
|
||||
"each process can be bound to a single D.")
|
||||
parser.add_argument("--visible_devices", type=str, default="0,1,2,3,4,5,6,7",
|
||||
help="will use the visible devices sequentially")
|
||||
parser.add_argument("--training_script", type=str,
|
||||
help="The full path to the single D training "
|
||||
"program/script to be launched in parallel, "
|
||||
"followed by all the arguments for the "
|
||||
"training script")
|
||||
# rest from the training program
|
||||
args, unknown = parser.parse_known_args()
|
||||
args.training_script_args = unknown
|
||||
return args
|
||||
|
||||
from args import launch_parse_args
|
||||
|
||||
def main():
|
||||
print("start", __file__)
|
||||
args = parse_args()
|
||||
args = launch_parse_args()
|
||||
print(args)
|
||||
visible_devices = args.visible_devices.split(',')
|
||||
assert os.path.isfile(args.training_script)
|
||||
|
|
|
@ -20,7 +20,7 @@ from mindspore.ops.operations import TensorAdd
|
|||
from mindspore import Parameter, Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
|
||||
__all__ = ['mobilenet_v2']
|
||||
__all__ = ['MobileNetV2', 'MobileNetV2Backbone', 'MobileNetV2Head', 'mobilenet_v2']
|
||||
|
||||
|
||||
def _make_divisible(v, divisor, min_value=None):
|
||||
|
@ -119,17 +119,19 @@ class ConvBNReLU(nn.Cell):
|
|||
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
|
||||
"""
|
||||
|
||||
def __init__(self, device_target, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
||||
def __init__(self, platform, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
padding = (kernel_size - 1) // 2
|
||||
if groups == 1:
|
||||
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', padding=padding)
|
||||
else:
|
||||
if device_target == "Ascend":
|
||||
if platform in ("CPU", "GPU"):
|
||||
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, group=in_planes, pad_mode='pad', \
|
||||
padding=padding)
|
||||
elif platform == "Ascend":
|
||||
conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding)
|
||||
elif device_target == "GPU":
|
||||
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride,
|
||||
group=in_planes, pad_mode='pad', padding=padding)
|
||||
else:
|
||||
raise ValueError("Unsupported Device, only support CPU, GPU and Ascend.")
|
||||
|
||||
layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
|
||||
self.features = nn.SequentialCell(layers)
|
||||
|
@ -156,7 +158,7 @@ class InvertedResidual(nn.Cell):
|
|||
>>> ResidualBlock(3, 256, 1, 1)
|
||||
"""
|
||||
|
||||
def __init__(self, device_target, inp, oup, stride, expand_ratio):
|
||||
def __init__(self, platform, inp, oup, stride, expand_ratio):
|
||||
super(InvertedResidual, self).__init__()
|
||||
assert stride in [1, 2]
|
||||
|
||||
|
@ -165,10 +167,10 @@ class InvertedResidual(nn.Cell):
|
|||
|
||||
layers = []
|
||||
if expand_ratio != 1:
|
||||
layers.append(ConvBNReLU(device_target, inp, hidden_dim, kernel_size=1))
|
||||
layers.append(ConvBNReLU(platform, inp, hidden_dim, kernel_size=1))
|
||||
layers.extend([
|
||||
# dw
|
||||
ConvBNReLU(device_target, hidden_dim, hidden_dim,
|
||||
ConvBNReLU(platform, hidden_dim, hidden_dim,
|
||||
stride=stride, groups=hidden_dim),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, kernel_size=1,
|
||||
|
@ -186,8 +188,7 @@ class InvertedResidual(nn.Cell):
|
|||
return self.add(identity, x)
|
||||
return x
|
||||
|
||||
|
||||
class MobileNetV2(nn.Cell):
|
||||
class MobileNetV2Backbone(nn.Cell):
|
||||
"""
|
||||
MobileNetV2 architecture.
|
||||
|
||||
|
@ -204,12 +205,10 @@ class MobileNetV2(nn.Cell):
|
|||
>>> MobileNetV2(num_classes=1000)
|
||||
"""
|
||||
|
||||
def __init__(self, device_target, num_classes=1000, width_mult=1.,
|
||||
has_dropout=False, inverted_residual_setting=None, round_nearest=8):
|
||||
super(MobileNetV2, self).__init__()
|
||||
def __init__(self, platform, width_mult=1., inverted_residual_setting=None, round_nearest=8,
|
||||
input_channel=32, last_channel=1280):
|
||||
super(MobileNetV2Backbone, self).__init__()
|
||||
block = InvertedResidual
|
||||
input_channel = 32
|
||||
last_channel = 1280
|
||||
# setting of inverted residual blocks
|
||||
self.cfgs = inverted_residual_setting
|
||||
if inverted_residual_setting is None:
|
||||
|
@ -227,28 +226,22 @@ class MobileNetV2(nn.Cell):
|
|||
# building first layer
|
||||
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
||||
self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
||||
features = [ConvBNReLU(device_target, 3, input_channel, stride=2)]
|
||||
features = [ConvBNReLU(platform, 3, input_channel, stride=2)]
|
||||
# building inverted residual blocks
|
||||
for t, c, n, s in self.cfgs:
|
||||
output_channel = _make_divisible(c * width_mult, round_nearest)
|
||||
for i in range(n):
|
||||
stride = s if i == 0 else 1
|
||||
features.append(block(device_target, input_channel, output_channel, stride, expand_ratio=t))
|
||||
features.append(block(platform, input_channel, output_channel, stride, expand_ratio=t))
|
||||
input_channel = output_channel
|
||||
# building last several layers
|
||||
features.append(ConvBNReLU(device_target, input_channel, self.out_channels, kernel_size=1))
|
||||
features.append(ConvBNReLU(platform, input_channel, self.out_channels, kernel_size=1))
|
||||
# make it nn.CellList
|
||||
self.features = nn.SequentialCell(features)
|
||||
# mobilenet head
|
||||
head = ([GlobalAvgPooling(), nn.Dense(self.out_channels, num_classes, has_bias=True)] if not has_dropout else
|
||||
[GlobalAvgPooling(), nn.Dropout(0.2), nn.Dense(self.out_channels, num_classes, has_bias=True)])
|
||||
self.head = nn.SequentialCell(head)
|
||||
|
||||
self._initialize_weights()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.features(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
def _initialize_weights(self):
|
||||
|
@ -267,8 +260,8 @@ class MobileNetV2(nn.Cell):
|
|||
for _, m in self.cells_and_names():
|
||||
if isinstance(m, (nn.Conv2d, DepthwiseConv)):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
|
||||
m.weight.data.shape).astype("float32")))
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),\
|
||||
m.weight.data.shape).astype("float32")))
|
||||
if m.bias is not None:
|
||||
m.bias.set_parameter_data(
|
||||
Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
|
||||
|
@ -277,16 +270,115 @@ class MobileNetV2(nn.Cell):
|
|||
Tensor(np.ones(m.gamma.data.shape, dtype="float32")))
|
||||
m.beta.set_parameter_data(
|
||||
Tensor(np.zeros(m.beta.data.shape, dtype="float32")))
|
||||
elif isinstance(m, nn.Dense):
|
||||
|
||||
@property
|
||||
def get_features(self):
|
||||
return self.features
|
||||
|
||||
class MobileNetV2Head(nn.Cell):
|
||||
"""
|
||||
MobileNetV2 architecture.
|
||||
|
||||
Args:
|
||||
class_num (Cell): number of classes.
|
||||
has_dropout (bool): Is dropout used. Default is false
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> MobileNetV2(num_classes=1000)
|
||||
"""
|
||||
|
||||
def __init__(self, input_channel=1280, num_classes=1000, has_dropout=False):
|
||||
super(MobileNetV2Head, self).__init__()
|
||||
# mobilenet head
|
||||
head = ([GlobalAvgPooling(), nn.Dense(input_channel, num_classes, has_bias=True)] if not has_dropout else
|
||||
[GlobalAvgPooling(), nn.Dropout(0.2), nn.Dense(input_channel, num_classes, has_bias=True)])
|
||||
self.head = nn.SequentialCell(head)
|
||||
self._initialize_weights()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
def _initialize_weights(self):
|
||||
"""
|
||||
Initialize weights.
|
||||
|
||||
Args:
|
||||
|
||||
Returns:
|
||||
None.
|
||||
|
||||
Examples:
|
||||
>>> _initialize_weights()
|
||||
"""
|
||||
self.init_parameters_data()
|
||||
for _, m in self.cells_and_names():
|
||||
if isinstance(m, nn.Dense):
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(
|
||||
0, 0.01, m.weight.data.shape).astype("float32")))
|
||||
if m.bias is not None:
|
||||
m.bias.set_parameter_data(
|
||||
Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
|
||||
@property
|
||||
def get_head(self):
|
||||
return self.head
|
||||
|
||||
class MobileNetV2(nn.Cell):
|
||||
"""
|
||||
MobileNetV2 architecture.
|
||||
|
||||
def mobilenet_v2(**kwargs):
|
||||
Args:
|
||||
backbone(nn.Cell):
|
||||
head(nn.Cell):
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> MobileNetV2(backbone, head)
|
||||
"""
|
||||
Constructs a MobileNet V2 model
|
||||
|
||||
def __init__(self, platform, num_classes=1000, width_mult=1., has_dropout=False, inverted_residual_setting=None, \
|
||||
round_nearest=8, input_channel=32, last_channel=1280):
|
||||
super(MobileNetV2, self).__init__()
|
||||
self.backbone = MobileNetV2Backbone(platform=platform, width_mult=width_mult, \
|
||||
inverted_residual_setting=inverted_residual_setting, \
|
||||
round_nearest=round_nearest, input_channel=input_channel, last_channel=last_channel).get_features
|
||||
self.head = MobileNetV2Head(input_channel=self.backbone.out_channel, num_classes=num_classes, \
|
||||
has_dropout=has_dropout).get_head
|
||||
|
||||
def construct(self, x):
|
||||
x = self.backbone(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
class MobileNetV2Combine(nn.Cell):
|
||||
"""
|
||||
return MobileNetV2(**kwargs)
|
||||
MobileNetV2 architecture.
|
||||
|
||||
Args:
|
||||
class_num (Cell): number of classes.
|
||||
width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
|
||||
has_dropout (bool): Is dropout used. Default is false
|
||||
inverted_residual_setting (list): Inverted residual settings. Default is None
|
||||
round_nearest (list): Channel round to . Default is 8
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> MobileNetV2(num_classes=1000)
|
||||
"""
|
||||
|
||||
def __init__(self, backbone, head):
|
||||
super(MobileNetV2Combine, self).__init__()
|
||||
self.backbone = backbone
|
||||
self.head = head
|
||||
|
||||
def construct(self, x):
|
||||
x = self.backbone(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
def mobilenet_v2(backbone, head):
|
||||
return MobileNetV2Combine(backbone, head)
|
||||
|
|
|
@ -0,0 +1,138 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import time
|
||||
import numpy as np
|
||||
from mindspore import Tensor
|
||||
from mindspore import nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from src.mobilenetV2 import MobileNetV2Backbone, MobileNetV2Head, mobilenet_v2
|
||||
|
||||
class CrossEntropyWithLabelSmooth(_Loss):
|
||||
"""
|
||||
CrossEntropyWith LabelSmooth.
|
||||
|
||||
Args:
|
||||
smooth_factor (float): smooth factor, default=0.
|
||||
num_classes (int): num classes
|
||||
|
||||
Returns:
|
||||
None.
|
||||
|
||||
Examples:
|
||||
>>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000)
|
||||
"""
|
||||
|
||||
def __init__(self, smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropyWithLabelSmooth, self).__init__()
|
||||
self.onehot = P.OneHot()
|
||||
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * smooth_factor /
|
||||
(num_classes - 1), mstype.float32)
|
||||
self.ce = nn.SoftmaxCrossEntropyWithLogits()
|
||||
self.mean = P.ReduceMean(False)
|
||||
self.cast = P.Cast()
|
||||
|
||||
def construct(self, logit, label):
|
||||
one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1],
|
||||
self.on_value, self.off_value)
|
||||
out_loss = self.ce(logit, one_hot_label)
|
||||
out_loss = self.mean(out_loss, 0)
|
||||
return out_loss
|
||||
|
||||
class Monitor(Callback):
|
||||
"""
|
||||
Monitor loss and time.
|
||||
|
||||
Args:
|
||||
lr_init (numpy array): train lr
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Examples:
|
||||
>>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
|
||||
"""
|
||||
|
||||
def __init__(self, lr_init=None):
|
||||
super(Monitor, self).__init__()
|
||||
self.lr_init = lr_init
|
||||
self.lr_init_len = len(lr_init)
|
||||
|
||||
def epoch_begin(self, run_context):
|
||||
self.losses = []
|
||||
self.epoch_time = time.time()
|
||||
|
||||
def epoch_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
|
||||
epoch_mseconds = (time.time() - self.epoch_time) * 1000
|
||||
per_step_mseconds = epoch_mseconds / cb_params.batch_num
|
||||
print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
|
||||
per_step_mseconds,
|
||||
np.mean(self.losses)))
|
||||
|
||||
def step_begin(self, run_context):
|
||||
self.step_time = time.time()
|
||||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
step_mseconds = (time.time() - self.step_time) * 1000
|
||||
step_loss = cb_params.net_outputs
|
||||
|
||||
if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
|
||||
step_loss = step_loss[0]
|
||||
if isinstance(step_loss, Tensor):
|
||||
step_loss = np.mean(step_loss.asnumpy())
|
||||
|
||||
self.losses.append(step_loss)
|
||||
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
|
||||
|
||||
print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
|
||||
cb_params.cur_epoch_num -
|
||||
1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,
|
||||
np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
|
||||
|
||||
def load_ckpt(network, pretrain_ckpt_path, trainable=True):
|
||||
"""
|
||||
incremental_learning or not
|
||||
"""
|
||||
param_dict = load_checkpoint(pretrain_ckpt_path)
|
||||
load_param_into_net(network, param_dict)
|
||||
if not trainable:
|
||||
for param in network.get_parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def define_net(args, config):
|
||||
backbone_net = MobileNetV2Backbone(platform=args.platform)
|
||||
head_net = MobileNetV2Head(input_channel=backbone_net.out_channels, num_classes=config.num_classes)
|
||||
net = mobilenet_v2(backbone_net, head_net)
|
||||
|
||||
# load the ckpt file to the network for fine tune or incremental leaning
|
||||
if args.pretrain_ckpt:
|
||||
if args.train_method == "fine_tune":
|
||||
load_ckpt(net, args.pretrain_ckpt)
|
||||
elif args.train_method == "incremental_learn":
|
||||
load_ckpt(backbone_net, args.pretrain_ckpt, trainable=False)
|
||||
elif args.train_method == "train":
|
||||
pass
|
||||
else:
|
||||
raise ValueError("must input the usage of pretrain_ckpt when the pretrain_ckpt isn't None")
|
||||
|
||||
return backbone_net, head_net, net
|
|
@ -0,0 +1,98 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import random
|
||||
import numpy as np
|
||||
import mindspore.dataset.engine as de
|
||||
|
||||
from mindspore import context
|
||||
from mindspore import nn
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.train.model import ParallelMode
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
|
||||
from mindspore.communication.management import get_rank, init, get_group_size
|
||||
|
||||
from src.models import Monitor
|
||||
|
||||
def set_seed(seed=1):
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
de.config.set_seed(1)
|
||||
|
||||
|
||||
def switch_precision(net, data_type, config):
|
||||
if config.platform == "Ascend":
|
||||
net.to_float(data_type)
|
||||
for _, cell in net.cells_and_names():
|
||||
if isinstance(cell, nn.Dense):
|
||||
cell.to_float(mstype.float32)
|
||||
|
||||
|
||||
def context_device_init(config):
|
||||
if config.platform == "CPU":
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=config.platform, save_graphs=False)
|
||||
|
||||
elif config.platform == "GPU":
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=config.platform, save_graphs=False)
|
||||
if config.run_distribute:
|
||||
init("nccl")
|
||||
context.set_auto_parallel_context(device_num=get_group_size(),
|
||||
parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
gradients_mean=True)
|
||||
|
||||
elif config.platform == "Ascend":
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=config.platform, device_id=config.device_id,
|
||||
save_graphs=False)
|
||||
if config.run_distribute:
|
||||
context.set_auto_parallel_context(device_num=config.rank_size,
|
||||
parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
parameter_broadcast=True, gradients_mean=True,
|
||||
all_reduce_fusion_config=[140])
|
||||
init()
|
||||
else:
|
||||
raise ValueError("Only support CPU, GPU and Ascend.")
|
||||
|
||||
|
||||
def set_context(config):
|
||||
if config.platform == "CPU":
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=config.platform,
|
||||
save_graphs=False)
|
||||
elif config.platform == "Ascend":
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=config.platform,
|
||||
device_id=config.device_id, save_graphs=False)
|
||||
elif config.platform == "GPU":
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target=config.platform, save_graphs=False)
|
||||
|
||||
|
||||
def config_ckpoint(config, lr, step_size):
|
||||
cb = None
|
||||
if config.platform in ("CPU", "GPU") or config.rank_id == 0:
|
||||
cb = [Monitor(lr_init=lr.asnumpy())]
|
||||
|
||||
if config.save_checkpoint:
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
||||
keep_checkpoint_max=config.keep_checkpoint_max)
|
||||
ckpt_save_dir = config.save_checkpoint_path
|
||||
|
||||
if config.platform == "GPU":
|
||||
if config.run_distribute:
|
||||
ckpt_save_dir += "ckpt_" + str(get_rank()) + "/"
|
||||
else:
|
||||
ckpt_save_dir += "ckpt_" + "/"
|
||||
|
||||
ckpt_cb = ModelCheckpoint(prefix="mobilenetV2", directory=ckpt_save_dir, config=config_ck)
|
||||
cb += [ckpt_cb]
|
||||
return cb
|
|
@ -16,263 +16,113 @@
|
|||
|
||||
import os
|
||||
import time
|
||||
import argparse
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
from mindspore import context
|
||||
from mindspore import Tensor
|
||||
from mindspore import nn
|
||||
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||
from mindspore.nn import WithLossCell, TrainOneStepCell
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.communication.management import init, get_group_size, get_rank
|
||||
import mindspore.dataset.engine as de
|
||||
from mindspore.train.serialization import _exec_save_checkpoint
|
||||
|
||||
from src.dataset import create_dataset
|
||||
|
||||
from src.dataset import create_dataset, extract_features
|
||||
from src.lr_generator import get_lr
|
||||
from src.config import config_gpu, config_ascend
|
||||
from src.mobilenetV2 import mobilenet_v2
|
||||
from src.config import set_config
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
de.config.set_seed(1)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
|
||||
parser.add_argument('--device_target', type=str, default=None, help='run device_target')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
if args_opt.device_target == "Ascend":
|
||||
device_id = int(os.getenv('DEVICE_ID', '0'))
|
||||
rank_id = int(os.getenv('RANK_ID', '0'))
|
||||
rank_size = int(os.getenv('RANK_SIZE', '1'))
|
||||
run_distribute = rank_size > 1
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target="Ascend",
|
||||
device_id=device_id, save_graphs=False)
|
||||
elif args_opt.device_target == "GPU":
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target="GPU",
|
||||
save_graphs=False)
|
||||
init("nccl")
|
||||
context.set_auto_parallel_context(device_num=get_group_size(),
|
||||
parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
mirror_mean=True)
|
||||
else:
|
||||
raise ValueError("Unsupported device target.")
|
||||
|
||||
|
||||
class CrossEntropyWithLabelSmooth(_Loss):
|
||||
"""
|
||||
CrossEntropyWith LabelSmooth.
|
||||
|
||||
Args:
|
||||
smooth_factor (float): smooth factor, default=0.
|
||||
num_classes (int): num classes
|
||||
|
||||
Returns:
|
||||
None.
|
||||
|
||||
Examples:
|
||||
>>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000)
|
||||
"""
|
||||
|
||||
def __init__(self, smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropyWithLabelSmooth, self).__init__()
|
||||
self.onehot = P.OneHot()
|
||||
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * smooth_factor /
|
||||
(num_classes - 1), mstype.float32)
|
||||
self.ce = nn.SoftmaxCrossEntropyWithLogits()
|
||||
self.mean = P.ReduceMean(False)
|
||||
self.cast = P.Cast()
|
||||
|
||||
def construct(self, logit, label):
|
||||
one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1],
|
||||
self.on_value, self.off_value)
|
||||
out_loss = self.ce(logit, one_hot_label)
|
||||
out_loss = self.mean(out_loss, 0)
|
||||
return out_loss
|
||||
|
||||
|
||||
class Monitor(Callback):
|
||||
"""
|
||||
Monitor loss and time.
|
||||
|
||||
Args:
|
||||
lr_init (numpy array): train lr
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Examples:
|
||||
>>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
|
||||
"""
|
||||
|
||||
def __init__(self, lr_init=None):
|
||||
super(Monitor, self).__init__()
|
||||
self.lr_init = lr_init
|
||||
self.lr_init_len = len(lr_init)
|
||||
|
||||
def epoch_begin(self, run_context):
|
||||
self.losses = []
|
||||
self.epoch_time = time.time()
|
||||
|
||||
def epoch_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
|
||||
epoch_mseconds = (time.time() - self.epoch_time) * 1000
|
||||
per_step_mseconds = epoch_mseconds / cb_params.batch_num
|
||||
print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
|
||||
per_step_mseconds,
|
||||
np.mean(self.losses)))
|
||||
|
||||
def step_begin(self, run_context):
|
||||
self.step_time = time.time()
|
||||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
step_mseconds = (time.time() - self.step_time) * 1000
|
||||
step_loss = cb_params.net_outputs
|
||||
|
||||
if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
|
||||
step_loss = step_loss[0]
|
||||
if isinstance(step_loss, Tensor):
|
||||
step_loss = np.mean(step_loss.asnumpy())
|
||||
|
||||
self.losses.append(step_loss)
|
||||
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
|
||||
|
||||
print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
|
||||
cb_params.cur_epoch_num -
|
||||
1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,
|
||||
np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
|
||||
from src.args import train_parse_args
|
||||
from src.utils import context_device_init, switch_precision, config_ckpoint, set_seed
|
||||
from src.models import CrossEntropyWithLabelSmooth, define_net
|
||||
|
||||
set_seed(1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
if args_opt.device_target == "GPU":
|
||||
# train on gpu
|
||||
print("train args: ", args_opt)
|
||||
print("cfg: ", config_gpu)
|
||||
args_opt = train_parse_args()
|
||||
config = set_config(args_opt)
|
||||
start = time.time()
|
||||
|
||||
# define network
|
||||
net = mobilenet_v2(num_classes=config_gpu.num_classes, device_target="GPU")
|
||||
# define loss
|
||||
if config_gpu.label_smooth > 0:
|
||||
loss = CrossEntropyWithLabelSmooth(smooth_factor=config_gpu.label_smooth,
|
||||
num_classes=config_gpu.num_classes)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
|
||||
# define dataset
|
||||
epoch_size = config_gpu.epoch_size
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=True,
|
||||
config=config_gpu,
|
||||
device_target=args_opt.device_target,
|
||||
repeat_num=1,
|
||||
batch_size=config_gpu.batch_size)
|
||||
print(f"train args: {args_opt}\ncfg: {config}")
|
||||
|
||||
#set context and device init
|
||||
context_device_init(config)
|
||||
|
||||
# define network
|
||||
backbone_net, head_net, net = define_net(args_opt, config)
|
||||
|
||||
# CPU only support "incremental_learn"
|
||||
if args_opt.train_method == "incremental_learn":
|
||||
step_size = extract_features(backbone_net, args_opt.dataset_path, config)
|
||||
net = head_net
|
||||
|
||||
elif args_opt.train_method in ("train", "fine_tune"):
|
||||
if args_opt.platform == "CPU":
|
||||
raise ValueError("Currently, CPU only support \"incremental_learn\", not \"fine_tune\" or \"train\".")
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, config=config)
|
||||
step_size = dataset.get_dataset_size()
|
||||
# resume
|
||||
if args_opt.pre_trained:
|
||||
param_dict = load_checkpoint(args_opt.pre_trained)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
# get learning rate
|
||||
loss_scale = FixedLossScaleManager(
|
||||
config_gpu.loss_scale, drop_overflow_update=False)
|
||||
lr = Tensor(get_lr(global_step=0,
|
||||
lr_init=0,
|
||||
lr_end=0,
|
||||
lr_max=config_gpu.lr,
|
||||
warmup_epochs=config_gpu.warmup_epochs,
|
||||
total_epochs=epoch_size,
|
||||
steps_per_epoch=step_size))
|
||||
# Currently, only Ascend support switch precision.
|
||||
switch_precision(net, mstype.float16, config)
|
||||
|
||||
# define optimization
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_gpu.momentum,
|
||||
config_gpu.weight_decay, config_gpu.loss_scale)
|
||||
# define model
|
||||
# define loss
|
||||
if config.label_smooth > 0:
|
||||
loss = CrossEntropyWithLabelSmooth(
|
||||
smooth_factor=config.label_smooth, num_classes=config.num_classes)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
|
||||
epoch_size = config.epoch_size
|
||||
|
||||
# get learning rate
|
||||
lr = Tensor(get_lr(global_step=0,
|
||||
lr_init=config.lr_init,
|
||||
lr_end=config.lr_end,
|
||||
lr_max=config.lr_max,
|
||||
warmup_epochs=config.warmup_epochs,
|
||||
total_epochs=epoch_size,
|
||||
steps_per_epoch=step_size))
|
||||
|
||||
if args_opt.train_method == "incremental_learn":
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay)
|
||||
|
||||
network = WithLossCell(net, loss)
|
||||
network = TrainOneStepCell(network, opt)
|
||||
network.set_train()
|
||||
|
||||
features_path = args_opt.dataset_path + '_features'
|
||||
idx_list = list(range(step_size))
|
||||
|
||||
if os.path.isdir(config.save_checkpoint_path):
|
||||
os.rename(config.save_checkpoint_path, "{}_{}".format(config.save_checkpoint_path, time.time()))
|
||||
os.mkdir(config.save_checkpoint_path)
|
||||
|
||||
for epoch in range(epoch_size):
|
||||
random.shuffle(idx_list)
|
||||
epoch_start = time.time()
|
||||
losses = []
|
||||
for j in idx_list:
|
||||
feature = Tensor(np.load(os.path.join(features_path, f"feature_{j}.npy")))
|
||||
label = Tensor(np.load(os.path.join(features_path, f"label_{j}.npy")))
|
||||
losses.append(network(feature, label).asnumpy())
|
||||
epoch_mseconds = (time.time()-epoch_start) * 1000
|
||||
per_step_mseconds = epoch_mseconds / step_size
|
||||
print("\r epoch[{}], iter[{}] cost: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}"\
|
||||
.format(epoch + 1, step_size, epoch_mseconds, per_step_mseconds, np.mean(np.array(losses))), \
|
||||
end="")
|
||||
if (epoch + 1) % config.save_checkpoint_epochs == 0:
|
||||
_exec_save_checkpoint(network, os.path.join(config.save_checkpoint_path, \
|
||||
f"mobilenetv2_head_{epoch+1}.ckpt"))
|
||||
print("total cost {:5.4f} s".format(time.time() - start))
|
||||
|
||||
elif args_opt.train_method in ("train", "fine_tune"):
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, \
|
||||
config.weight_decay, config.loss_scale)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale)
|
||||
|
||||
cb = config_ckpoint(config, lr, step_size)
|
||||
print("============== Starting Training ==============")
|
||||
cb = [Monitor(lr_init=lr.asnumpy())]
|
||||
ckpt_save_dir = config_gpu.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
|
||||
if config_gpu.save_checkpoint:
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=config_gpu.save_checkpoint_epochs * step_size,
|
||||
keep_checkpoint_max=config_gpu.keep_checkpoint_max)
|
||||
ckpt_cb = ModelCheckpoint(prefix="mobilenetV2", directory=ckpt_save_dir, config=config_ck)
|
||||
cb += [ckpt_cb]
|
||||
# begin train
|
||||
model.train(epoch_size, dataset, callbacks=cb)
|
||||
model.train(epoch_size, dataset, callbacks=cb, dataset_sink_mode=False)
|
||||
print("============== End Training ==============")
|
||||
elif args_opt.device_target == "Ascend":
|
||||
# train on ascend
|
||||
print("train args: ", args_opt, "\ncfg: ", config_ascend,
|
||||
"\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
|
||||
|
||||
if run_distribute:
|
||||
context.set_auto_parallel_context(device_num=rank_size, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
parameter_broadcast=True, mirror_mean=True)
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([140])
|
||||
init()
|
||||
|
||||
epoch_size = config_ascend.epoch_size
|
||||
net = mobilenet_v2(num_classes=config_ascend.num_classes, device_target="Ascend")
|
||||
net.to_float(mstype.float16)
|
||||
for _, cell in net.cells_and_names():
|
||||
if isinstance(cell, nn.Dense):
|
||||
cell.to_float(mstype.float32)
|
||||
if config_ascend.label_smooth > 0:
|
||||
loss = CrossEntropyWithLabelSmooth(
|
||||
smooth_factor=config_ascend.label_smooth, num_classes=config_ascend.num_classes)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(
|
||||
is_grad=False, sparse=True, reduction='mean')
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=True,
|
||||
config=config_ascend,
|
||||
device_target=args_opt.device_target,
|
||||
repeat_num=1,
|
||||
batch_size=config_ascend.batch_size)
|
||||
step_size = dataset.get_dataset_size()
|
||||
if args_opt.pre_trained:
|
||||
param_dict = load_checkpoint(args_opt.pre_trained)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
loss_scale = FixedLossScaleManager(
|
||||
config_ascend.loss_scale, drop_overflow_update=False)
|
||||
lr = Tensor(get_lr(global_step=0,
|
||||
lr_init=0,
|
||||
lr_end=0,
|
||||
lr_max=config_ascend.lr,
|
||||
warmup_epochs=config_ascend.warmup_epochs,
|
||||
total_epochs=epoch_size,
|
||||
steps_per_epoch=step_size))
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_ascend.momentum,
|
||||
config_ascend.weight_decay, config_ascend.loss_scale)
|
||||
|
||||
model = Model(net, loss_fn=loss, optimizer=opt,
|
||||
loss_scale_manager=loss_scale)
|
||||
|
||||
cb = None
|
||||
if rank_id == 0:
|
||||
cb = [Monitor(lr_init=lr.asnumpy())]
|
||||
if config_ascend.save_checkpoint:
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=config_ascend.save_checkpoint_epochs * step_size,
|
||||
keep_checkpoint_max=config_ascend.keep_checkpoint_max)
|
||||
ckpt_cb = ModelCheckpoint(
|
||||
prefix="mobilenetV2", directory=config_ascend.save_checkpoint_path, config=config_ck)
|
||||
cb += [ckpt_cb]
|
||||
model.train(epoch_size, dataset, callbacks=cb)
|
||||
else:
|
||||
raise ValueError("Unsupported device_target.")
|
||||
|
|
Loading…
Reference in New Issue