forked from mindspore-Ecosystem/mindspore
!960 Adding example for grayscale
Merge pull request !960 from EricZ/grayscale_fix
This commit is contained in:
commit
47f5abceb4
|
@ -370,6 +370,11 @@ Status HwcToChw(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output)
|
|||
if (!input_cv->mat().data) {
|
||||
RETURN_STATUS_UNEXPECTED("Could not convert to CV Tensor");
|
||||
}
|
||||
if (input_cv->Rank() == 2) {
|
||||
// If input tensor is 2D, we assume we have hw dimensions
|
||||
*output = input;
|
||||
return Status::OK();
|
||||
}
|
||||
if (input_cv->shape().Size() != 3 && input_cv->shape()[2] != 3) {
|
||||
RETURN_STATUS_UNEXPECTED("The shape is incorrect: number of channels is not equal 3");
|
||||
}
|
||||
|
@ -395,9 +400,6 @@ Status HwcToChw(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output)
|
|||
Status SwapRedAndBlue(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output) {
|
||||
try {
|
||||
std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(std::move(input));
|
||||
if (!input_cv->mat().data) {
|
||||
RETURN_STATUS_UNEXPECTED("Could not convert to CV Tensor");
|
||||
}
|
||||
if (input_cv->shape().Size() != 3 && input_cv->shape()[2] != 3) {
|
||||
RETURN_STATUS_UNEXPECTED("The shape is incorrect: number of channels is not equal 3");
|
||||
}
|
||||
|
@ -714,7 +716,10 @@ Status Pad(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output
|
|||
}
|
||||
std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(out_image);
|
||||
RETURN_UNEXPECTED_IF_NULL(output_cv);
|
||||
// pad the dimension if shape information is only 2 dimensional, this is grayscale
|
||||
if (input_cv->Rank() == 3 && input_cv->shape()[2] == 1 && output_cv->Rank() == 2) output_cv->ExpandDim(2);
|
||||
*output = std::static_pointer_cast<Tensor>(output_cv);
|
||||
|
||||
return Status::OK();
|
||||
} catch (const cv::Exception &e) {
|
||||
RETURN_STATUS_UNEXPECTED("Unexpected error in pad");
|
||||
|
|
|
@ -108,9 +108,42 @@ def test_center_crop_comp(height=375, width=375, plot=False):
|
|||
visualize(image, image_cropped)
|
||||
|
||||
|
||||
def test_crop_grayscale(height=375, width=375):
|
||||
"""
|
||||
Test that centercrop works with pad and grayscale images
|
||||
"""
|
||||
def channel_swap(image):
|
||||
"""
|
||||
Py func hack for our pytransforms to work with c transforms
|
||||
"""
|
||||
return (image.transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.Grayscale(1),
|
||||
py_vision.ToTensor(),
|
||||
(lambda image: channel_swap(image))
|
||||
]
|
||||
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||
|
||||
# if input is grayscale, the output dimensions should be single channel
|
||||
crop_gray = vision.CenterCrop([height, width])
|
||||
data1 = data1.map(input_columns=["image"], operations=crop_gray)
|
||||
|
||||
for item1 in data1.create_dict_iterator():
|
||||
c_image = item1["image"]
|
||||
|
||||
# check that the image is grayscale
|
||||
assert (len(c_image.shape) == 3 and c_image.shape[2] == 1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_center_crop_op(600, 600)
|
||||
test_center_crop_op(300, 600)
|
||||
test_center_crop_op(600, 300)
|
||||
test_center_crop_md5(600, 600)
|
||||
test_center_crop_md5()
|
||||
test_center_crop_comp()
|
||||
test_crop_grayscale()
|
||||
|
|
|
@ -22,34 +22,11 @@ import numpy as np
|
|||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
||||
from mindspore import log as logger
|
||||
from util import diff_mse
|
||||
|
||||
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||||
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||
|
||||
|
||||
def visualize(first, mse, second):
|
||||
"""
|
||||
visualizes the image using DE op and enCV
|
||||
"""
|
||||
plt.subplot(141)
|
||||
plt.imshow(first)
|
||||
plt.title("c transformed image")
|
||||
|
||||
plt.subplot(142)
|
||||
plt.imshow(second)
|
||||
plt.title("py random_color_jitter image")
|
||||
|
||||
plt.subplot(143)
|
||||
plt.imshow(first - second)
|
||||
plt.title("Difference image, mse : {}".format(mse))
|
||||
plt.show()
|
||||
|
||||
|
||||
def diff_mse(in1, in2):
|
||||
mse = (np.square(in1.astype(float) / 255 - in2.astype(float) / 255)).mean()
|
||||
return mse * 100
|
||||
|
||||
|
||||
def test_pad_op():
|
||||
"""
|
||||
Test Pad op
|
||||
|
@ -77,9 +54,7 @@ def test_pad_op():
|
|||
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
data2 = data2.map(input_columns=["image"], operations=transform())
|
||||
|
||||
num_iter = 0
|
||||
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
||||
num_iter += 1
|
||||
c_image = item1["image"]
|
||||
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||
|
||||
|
@ -89,11 +64,60 @@ def test_pad_op():
|
|||
logger.info("dtype of c_image: {}".format(c_image.dtype))
|
||||
logger.info("dtype of py_image: {}".format(py_image.dtype))
|
||||
|
||||
diff = c_image - py_image
|
||||
mse = diff_mse(c_image, py_image)
|
||||
logger.info("mse is {}".format(mse))
|
||||
assert mse < 0.01
|
||||
|
||||
|
||||
def test_pad_grayscale():
|
||||
"""
|
||||
Tests that the pad works for grayscale images
|
||||
"""
|
||||
def channel_swap(image):
|
||||
"""
|
||||
Py func hack for our pytransforms to work with c transforms
|
||||
"""
|
||||
return (image.transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.Grayscale(1),
|
||||
py_vision.ToTensor(),
|
||||
(lambda image: channel_swap(image))
|
||||
]
|
||||
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||
|
||||
# if input is grayscale, the output dimensions should be single channel
|
||||
pad_gray = c_vision.Pad(100, fill_value=(20, 20, 20))
|
||||
data1 = data1.map(input_columns=["image"], operations=pad_gray)
|
||||
dataset_shape_1 = []
|
||||
for item1 in data1.create_dict_iterator():
|
||||
c_image = item1["image"]
|
||||
dataset_shape_1.append(c_image.shape)
|
||||
|
||||
# Dataset for comparison
|
||||
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
decode_op = c_vision.Decode()
|
||||
|
||||
# we use the same padding logic
|
||||
ctrans = [decode_op, pad_gray]
|
||||
dataset_shape_2 = []
|
||||
|
||||
data2 = data2.map(input_columns=["image"], operations=ctrans)
|
||||
|
||||
for item2 in data2.create_dict_iterator():
|
||||
c_image = item2["image"]
|
||||
dataset_shape_2.append(c_image.shape)
|
||||
|
||||
for shape1, shape2 in zip(dataset_shape_1, dataset_shape_2):
|
||||
# validate that the first two dimensions are the same
|
||||
# we have a little inconsistency here because the third dimension is 1 after py_vision.Grayscale
|
||||
assert (shape1[0:1] == shape2[0:1])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_pad_op()
|
||||
test_pad_grayscale()
|
||||
|
|
|
@ -22,6 +22,7 @@ import numpy as np
|
|||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
||||
from mindspore import log as logger
|
||||
from util import diff_mse
|
||||
|
||||
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||||
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||
|
@ -29,7 +30,7 @@ SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|||
|
||||
def visualize(first, mse, second):
|
||||
"""
|
||||
visualizes the image using DE op and enCV
|
||||
visualizes the image using DE op and OpenCV
|
||||
"""
|
||||
plt.subplot(141)
|
||||
plt.imshow(first)
|
||||
|
@ -45,12 +46,7 @@ def visualize(first, mse, second):
|
|||
plt.show()
|
||||
|
||||
|
||||
def diff_mse(in1, in2):
|
||||
mse = (np.square(in1.astype(float) / 255 - in2.astype(float) / 255)).mean()
|
||||
return mse * 100
|
||||
|
||||
|
||||
def test_random_color_adjust_op_brightness():
|
||||
def test_random_color_adjust_op_brightness(plot=False):
|
||||
"""
|
||||
Test RandomColorAdjust op
|
||||
"""
|
||||
|
@ -92,15 +88,16 @@ def test_random_color_adjust_op_brightness():
|
|||
|
||||
mse = diff_mse(c_image, py_image)
|
||||
logger.info("mse is {}".format(mse))
|
||||
|
||||
logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
|
||||
assert mse < 0.01
|
||||
# logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
|
||||
# if mse != 0:
|
||||
# logger.info("mse is: {}".format(mse))
|
||||
# Uncomment below line if you want to visualize images
|
||||
# visualize(c_image, mse, py_image)
|
||||
if plot:
|
||||
visualize(c_image, mse, py_image)
|
||||
|
||||
|
||||
def test_random_color_adjust_op_contrast():
|
||||
def test_random_color_adjust_op_contrast(plot=False):
|
||||
"""
|
||||
Test RandomColorAdjust op
|
||||
"""
|
||||
|
@ -139,11 +136,10 @@ def test_random_color_adjust_op_contrast():
|
|||
|
||||
logger.info("dtype of c_image: {}".format(c_image.dtype))
|
||||
logger.info("dtype of py_image: {}".format(py_image.dtype))
|
||||
|
||||
diff = c_image - py_image
|
||||
logger.info("contrast difference c is : {}".format(c_image[0][0]))
|
||||
logger.info("contrast difference py is : {}".format(py_image[0][0]))
|
||||
|
||||
diff = c_image - py_image
|
||||
logger.info("contrast difference is : {}".format(diff[0][0]))
|
||||
# mse = (np.sum(np.power(diff, 2))) / (c_image.shape[0] * c_image.shape[1])
|
||||
mse = diff_mse(c_image, py_image)
|
||||
|
@ -152,11 +148,11 @@ def test_random_color_adjust_op_contrast():
|
|||
# logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
|
||||
# if mse != 0:
|
||||
# logger.info("mse is: {}".format(mse))
|
||||
# Uncomment below line if you want to visualize images
|
||||
# visualize(c_image, mse, py_image)
|
||||
if plot:
|
||||
visualize(c_image, mse, py_image)
|
||||
|
||||
|
||||
def test_random_color_adjust_op_saturation():
|
||||
def test_random_color_adjust_op_saturation(plot=False):
|
||||
"""
|
||||
Test RandomColorAdjust op
|
||||
"""
|
||||
|
@ -197,19 +193,17 @@ def test_random_color_adjust_op_saturation():
|
|||
logger.info("dtype of c_image: {}".format(c_image.dtype))
|
||||
logger.info("dtype of py_image: {}".format(py_image.dtype))
|
||||
|
||||
diff = c_image - py_image
|
||||
|
||||
mse = diff_mse(c_image, py_image)
|
||||
logger.info("mse is {}".format(mse))
|
||||
assert mse < 0.01
|
||||
# logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
|
||||
# if mse != 0:
|
||||
# logger.info("mse is: {}".format(mse))
|
||||
# Uncomment below line if you want to visualize images
|
||||
# visualize(c_image, mse, py_image)
|
||||
if plot:
|
||||
visualize(c_image, mse, py_image)
|
||||
|
||||
|
||||
def test_random_color_adjust_op_hue():
|
||||
def test_random_color_adjust_op_hue(plot=False):
|
||||
"""
|
||||
Test RandomColorAdjust op
|
||||
"""
|
||||
|
@ -251,13 +245,45 @@ def test_random_color_adjust_op_hue():
|
|||
logger.info("dtype of py_image: {}".format(py_image.dtype))
|
||||
# logger.info("dtype of img: {}".format(img.dtype))
|
||||
|
||||
diff = c_image - py_image
|
||||
# mse = (np.sum(np.power(diff, 2))) / (c_image.shape[0] * c_image.shape[1])
|
||||
mse = diff_mse(c_image, py_image)
|
||||
logger.info("mse is {}".format(mse))
|
||||
assert mse < 0.01
|
||||
# Uncomment below line if you want to visualize images
|
||||
# visualize(c_image, mse, py_image)
|
||||
if plot:
|
||||
visualize(c_image, mse, py_image)
|
||||
|
||||
|
||||
def test_random_color_adjust_grayscale():
|
||||
"""
|
||||
Tests that the random color adjust works for grayscale images
|
||||
"""
|
||||
def channel_swap(image):
|
||||
"""
|
||||
Py func hack for our pytransforms to work with c transforms
|
||||
"""
|
||||
return (image.transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.Grayscale(1),
|
||||
py_vision.ToTensor(),
|
||||
(lambda image: channel_swap(image))
|
||||
]
|
||||
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||
|
||||
# if input is grayscale, the output dimensions should be single channel, the following should fail
|
||||
random_adjust_op = c_vision.RandomColorAdjust((1, 1), (1, 1), (1, 1), (0.2, 0.2))
|
||||
try:
|
||||
data1 = data1.map(input_columns=["image"], operations=random_adjust_op)
|
||||
dataset_shape_1 = []
|
||||
for item1 in data1.create_dict_iterator():
|
||||
c_image = item1["image"]
|
||||
dataset_shape_1.append(c_image.shape)
|
||||
except BaseException as e:
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -265,3 +291,4 @@ if __name__ == "__main__":
|
|||
test_random_color_adjust_op_contrast()
|
||||
test_random_color_adjust_op_saturation()
|
||||
test_random_color_adjust_op_hue()
|
||||
test_random_color_adjust_grayscale()
|
||||
|
|
Loading…
Reference in New Issue