forked from mindspore-Ecosystem/mindspore
!1329 Put the parameter validation of the Summary operator into the python layer
Merge pull request !1329 from ougongchang/master
This commit is contained in:
commit
45368a86e9
|
@ -57,9 +57,6 @@ std::string CNode::fullname_with_scope() {
|
|||
if (IsApply(prim::kPrimScalarSummary) || IsApply(prim::kPrimTensorSummary) || IsApply(prim::kPrimImageSummary) ||
|
||||
IsApply(prim::kPrimHistogramSummary)) {
|
||||
std::string tag = GetValue<std::string>(GetValueNode(input(1)));
|
||||
if (tag == "") {
|
||||
MS_LOG(EXCEPTION) << "The tag name is null, should be valid string";
|
||||
}
|
||||
std::string name;
|
||||
if (IsApply(prim::kPrimScalarSummary)) {
|
||||
name = tag + "[:Scalar]";
|
||||
|
|
|
@ -21,64 +21,5 @@
|
|||
#include "utils/symbolic.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace abstract {
|
||||
AbstractBasePtr InferImplScalarSummary(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list) {
|
||||
// Inputs: a scalar and a tensor or scalar.
|
||||
const std::string op_name = primitive->name();
|
||||
CheckArgsSize(op_name, args_spec_list, 2);
|
||||
|
||||
// check the tag
|
||||
AbstractScalarPtr descriptions = CheckArg<AbstractScalar>(op_name, args_spec_list, 0);
|
||||
|
||||
// check the value: scalar or shape = (1,)
|
||||
auto scalar_value = dyn_cast<AbstractScalar>(args_spec_list[1]);
|
||||
if (scalar_value == nullptr) {
|
||||
auto tensor_value = dyn_cast<AbstractTensor>(args_spec_list[1]);
|
||||
if (tensor_value == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "Input must be scalar or shape(1,)";
|
||||
}
|
||||
} else {
|
||||
auto item_v = scalar_value->BuildValue();
|
||||
if (item_v->isa<StringImm>()) {
|
||||
auto value = item_v->cast<StringImmPtr>()->value();
|
||||
if (value.empty()) {
|
||||
MS_LOG(EXCEPTION) << "Input summary value can't be null";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Reomve the force check to support batch set summary use 'for' loop
|
||||
auto item_v = descriptions->BuildValue();
|
||||
if (!item_v->isa<StringImm>()) {
|
||||
MS_EXCEPTION(TypeError) << "Summary first parameter should be string";
|
||||
}
|
||||
|
||||
return std::make_shared<AbstractScalar>(kAnyValue, kBool);
|
||||
}
|
||||
|
||||
AbstractBasePtr InferImplTensorSummary(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list) {
|
||||
// Inputs: a scalar(tag) and a tensor(value)
|
||||
const std::string op_name = primitive->name();
|
||||
CheckArgsSize(op_name, args_spec_list, 2);
|
||||
|
||||
// check the tag
|
||||
auto descriptions = CheckArg<AbstractScalar>(op_name, args_spec_list, 0);
|
||||
auto tensor_value = CheckArg<AbstractTensor>(op_name, args_spec_list, 1);
|
||||
|
||||
int tensor_rank = SizeToInt(tensor_value->shape()->shape().size());
|
||||
if (tensor_rank == 0) {
|
||||
MS_LOG(EXCEPTION) << op_name << " summary evaluator second arg should be an tensor, but got a scalar, rank is 0";
|
||||
}
|
||||
|
||||
// Reomve the force check to support batch set summary use 'for' loop
|
||||
auto item_v = descriptions->BuildValue();
|
||||
if (!item_v->isa<StringImm>()) {
|
||||
MS_EXCEPTION(TypeError) << "Summary first parameter should be string";
|
||||
}
|
||||
|
||||
return std::make_shared<AbstractScalar>(kAnyValue, std::make_shared<Bool>());
|
||||
}
|
||||
} // namespace abstract
|
||||
namespace abstract {} // namespace abstract
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -128,11 +128,6 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() {
|
|||
{prim::kPrimDepend, {InferImplDepend, true}},
|
||||
{prim::kPrimBroadcastGradientArgs, {InferImplBroadcastGradientArgs, false}},
|
||||
{prim::kPrimControlDepend, {InferImplControlDepend, true}},
|
||||
// Debug
|
||||
{prim::kPrimScalarSummary, {InferImplScalarSummary, true}},
|
||||
{prim::kPrimImageSummary, {InferImplTensorSummary, true}},
|
||||
{prim::kPrimTensorSummary, {InferImplTensorSummary, true}},
|
||||
{prim::kPrimHistogramSummary, {InferImplTensorSummary, true}},
|
||||
};
|
||||
return prim_eval_implement_map;
|
||||
}
|
||||
|
|
|
@ -326,11 +326,6 @@ AbstractBasePtr InferImplBroadcastGradientArgs(const AnalysisEnginePtr &, const
|
|||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplControlDepend(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
|
||||
AbstractBasePtr InferImplScalarSummary(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplTensorSummary(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
} // namespace abstract
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -16,10 +16,22 @@
|
|||
"""debug_ops"""
|
||||
from ..._checkparam import Validator as validator
|
||||
from ...common import dtype as mstype
|
||||
from ..primitive import Primitive, prim_attr_register, PrimitiveWithInfer
|
||||
from ..primitive import prim_attr_register, PrimitiveWithInfer
|
||||
|
||||
|
||||
class ScalarSummary(Primitive):
|
||||
def _check_summary_param(name, value, class_name):
|
||||
"""Check the name and value is valid for summary."""
|
||||
n_type = name['dtype']
|
||||
n_value = name['value']
|
||||
validator.check_value_type('name', n_type, [type(mstype.string)], class_name)
|
||||
if not n_value:
|
||||
raise ValueError(f"For 'name' the value should by valid string in {class_name}, but got {n_value}.")
|
||||
|
||||
v_type = value['dtype']
|
||||
validator.check_value_type('value', v_type, [type(mstype.tensor)], class_name)
|
||||
|
||||
|
||||
class ScalarSummary(PrimitiveWithInfer):
|
||||
"""
|
||||
Output scalar to protocol buffer through scalar summary operator.
|
||||
|
||||
|
@ -45,11 +57,19 @@ class ScalarSummary(Primitive):
|
|||
def __init__(self):
|
||||
"""init"""
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
pass
|
||||
def __infer__(self, name, value):
|
||||
_check_summary_param(name, value, self.__class__.__name__)
|
||||
|
||||
v_shape = value['shape']
|
||||
# In the summary, the value whose shape is [1] is also considered as a scalar.
|
||||
if v_shape and v_shape != [1]:
|
||||
raise ValueError(f"For 'value' the type should be scalar, "
|
||||
f"shape should be [] or [1] in {self.__class__.__name__}, but got {v_shape}.")
|
||||
|
||||
return value
|
||||
|
||||
|
||||
class ImageSummary(Primitive):
|
||||
class ImageSummary(PrimitiveWithInfer):
|
||||
"""
|
||||
Output image tensor to protocol buffer through image summary operator.
|
||||
|
||||
|
@ -73,11 +93,20 @@ class ImageSummary(Primitive):
|
|||
def __init__(self):
|
||||
"""init"""
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
pass
|
||||
def __infer__(self, name, value):
|
||||
_check_summary_param(name, value, self.__class__.__name__)
|
||||
|
||||
# The shape dim of image should be 4.
|
||||
v_shape = value['shape']
|
||||
image_dim = 4
|
||||
if len(v_shape) != image_dim:
|
||||
raise ValueError(f"For 'value' the dim should be {image_dim} in {self.__class__.__name__},"
|
||||
f" but got {len(v_shape)}.")
|
||||
|
||||
return value
|
||||
|
||||
|
||||
class TensorSummary(Primitive):
|
||||
class TensorSummary(PrimitiveWithInfer):
|
||||
"""
|
||||
Output tensor to protocol buffer through tensor summary operator.
|
||||
|
||||
|
@ -103,11 +132,19 @@ class TensorSummary(Primitive):
|
|||
def __init__(self):
|
||||
"""init"""
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
pass
|
||||
def __infer__(self, name, value):
|
||||
_check_summary_param(name, value, self.__class__.__name__)
|
||||
|
||||
v_shape = value['shape']
|
||||
# In the summary, the value whose shape is [] is not considered as a tensor.
|
||||
if not v_shape:
|
||||
raise ValueError(f"For 'value' the type should be tensor in {self.__class__.__name__}, "
|
||||
f"shape should not be [].")
|
||||
|
||||
return value
|
||||
|
||||
|
||||
class HistogramSummary(Primitive):
|
||||
class HistogramSummary(PrimitiveWithInfer):
|
||||
"""
|
||||
Output tensor to protocol buffer through histogram summary operator.
|
||||
|
||||
|
@ -133,6 +170,17 @@ class HistogramSummary(Primitive):
|
|||
def __init__(self):
|
||||
"""init"""
|
||||
|
||||
def __infer__(self, name, value):
|
||||
_check_summary_param(name, value, self.__class__.__name__)
|
||||
|
||||
v_shape = value['shape']
|
||||
# In the summary, the histogram value should be a tensor whose shape is not [].
|
||||
if not v_shape:
|
||||
raise ValueError(f"For 'value' the type should be tensor in {self.__class__.__name__}, "
|
||||
f"shape should not be [].")
|
||||
|
||||
return value
|
||||
|
||||
|
||||
class InsertGradientOf(PrimitiveWithInfer):
|
||||
"""
|
||||
|
|
|
@ -12,11 +12,14 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Summary gpu st."""
|
||||
import os
|
||||
import random
|
||||
import tempfile
|
||||
import shutil
|
||||
import pytest
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
|
@ -26,36 +29,9 @@ from mindspore.train.summary.summary_record import SummaryRecord
|
|||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
CUR_DIR = os.getcwd()
|
||||
SUMMARY_DIR_ME = CUR_DIR + "/test_me_summary_event_file/"
|
||||
SUMMARY_DIR_ME_TEMP = CUR_DIR + "/test_me_temp_summary_event_file/"
|
||||
|
||||
|
||||
def clean_environment_file(srcDir):
|
||||
if os.path.exists(srcDir):
|
||||
ls = os.listdir(srcDir)
|
||||
for line in ls:
|
||||
filePath = os.path.join(srcDir, line)
|
||||
os.remove(filePath)
|
||||
os.removedirs(srcDir)
|
||||
|
||||
|
||||
def save_summary_events_file(srcDir, desDir):
|
||||
if not os.path.exists(desDir):
|
||||
print("-- create desDir")
|
||||
os.makedirs(desDir)
|
||||
|
||||
ls = os.listdir(srcDir)
|
||||
for line in ls:
|
||||
filePath = os.path.join(srcDir, line)
|
||||
if os.path.isfile(filePath):
|
||||
print("-- move events file : {}".format(filePath))
|
||||
shutil.copy(filePath, desDir)
|
||||
os.remove(filePath)
|
||||
os.removedirs(srcDir)
|
||||
|
||||
|
||||
class SummaryNet(nn.Cell):
|
||||
"""Summary net."""
|
||||
def __init__(self, tag_tuple=None, scalar=1):
|
||||
super(SummaryNet, self).__init__()
|
||||
self.summary_s = P.ScalarSummary()
|
||||
|
@ -66,8 +42,9 @@ class SummaryNet(nn.Cell):
|
|||
self.tag_tuple = tag_tuple
|
||||
self.scalar = scalar
|
||||
|
||||
def construct(self, x, y):
|
||||
self.summary_i("image", x)
|
||||
def construct(self, x, y, image):
|
||||
"""Run summary net."""
|
||||
self.summary_i("image", image)
|
||||
self.summary_s("x1", x)
|
||||
z = self.add(x, y)
|
||||
self.summary_t("z1", z)
|
||||
|
@ -75,32 +52,38 @@ class SummaryNet(nn.Cell):
|
|||
return z
|
||||
|
||||
|
||||
def train_summary_record_scalar_for_1(test_writer, steps):
|
||||
def train_summary_record(test_writer, steps):
|
||||
"""Train and record summary."""
|
||||
net = SummaryNet()
|
||||
out_me_dict = {}
|
||||
for i in range(0, steps):
|
||||
x = Tensor(np.array([1.1 + random.uniform(1, 10)]).astype(np.float32))
|
||||
y = Tensor(np.array([1.2 + random.uniform(1, 10)]).astype(np.float32))
|
||||
out_put = net(x, y)
|
||||
image = Tensor(np.array([[[[1.2]]]]).astype(np.float32))
|
||||
out_put = net(x, y, image)
|
||||
test_writer.record(i)
|
||||
print("-----------------output: %s-------------\n", out_put.asnumpy())
|
||||
out_me_dict[i] = out_put.asnumpy()
|
||||
return out_me_dict
|
||||
|
||||
|
||||
def me_scalar_summary(steps):
|
||||
with SummaryRecord(SUMMARY_DIR_ME_TEMP) as test_writer:
|
||||
out_me_dict = train_summary_record_scalar_for_1(test_writer, steps)
|
||||
class TestGpuSummary:
|
||||
"""Test Gpu summary."""
|
||||
summary_dir = tempfile.mkdtemp(suffix='_gpu_summary')
|
||||
|
||||
return out_me_dict
|
||||
def setup_method(self):
|
||||
"""Run before method."""
|
||||
if not os.path.exists(self.summary_dir):
|
||||
os.mkdir(self.summary_dir)
|
||||
|
||||
def teardown_emthod(self):
|
||||
"""Run after method."""
|
||||
if os.path.exists(self.summary_dir):
|
||||
shutil.rmtree(self.summary_dir)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_scalarsummary_scalar1_step10_summaryrecord1():
|
||||
clean_environment_file(SUMMARY_DIR_ME_TEMP)
|
||||
output_dict = me_scalar_summary(10)
|
||||
print("test_scalarsummary_scalar1_step10_summaryrecord1 \n", output_dict)
|
||||
save_summary_events_file(SUMMARY_DIR_ME_TEMP, SUMMARY_DIR_ME)
|
||||
clean_environment_file(SUMMARY_DIR_ME)
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_summary_step10_summaryrecord1(self):
|
||||
"""Test record 10 step summary."""
|
||||
with SummaryRecord(self.summary_dir) as test_writer:
|
||||
train_summary_record(test_writer, steps=10)
|
||||
|
|
|
@ -492,7 +492,7 @@ test_cases = [
|
|||
}),
|
||||
('ScalarSummary', {
|
||||
'block': ScalarSummaryNet(),
|
||||
'desc_inputs': [2.2],
|
||||
'desc_inputs': [Tensor(2.2)],
|
||||
}),
|
||||
('L2Normalize', {
|
||||
'block': L2NormalizeNet(),
|
||||
|
|
|
@ -112,7 +112,7 @@ def test_InsertGradientOf_3():
|
|||
def f(x, y):
|
||||
return C.grad_all(debug_test)(x, y)
|
||||
|
||||
print("debug_gradient:", f(1, 2))
|
||||
print("debug_gradient:", f(Tensor(1.0), Tensor(2.0)))
|
||||
|
||||
|
||||
def test_print_shape_type():
|
||||
|
|
|
@ -12,260 +12,139 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
@File : test_summary.py
|
||||
@Author:
|
||||
@Date : 2019-08-5
|
||||
@Desc : test summary function of ops params valid check
|
||||
"""
|
||||
import logging
|
||||
import numpy as np
|
||||
"""Test summary function of ops params valid check."""
|
||||
import os
|
||||
import tempfile
|
||||
import shutil
|
||||
from enum import Enum
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import random
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.summary.summary_record import SummaryRecord
|
||||
|
||||
CUR_DIR = os.getcwd()
|
||||
SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/"
|
||||
|
||||
log = logging.getLogger("test")
|
||||
log.setLevel(level=logging.ERROR)
|
||||
class SummaryEnum(Enum):
|
||||
"""Summary enum."""
|
||||
IMAGE = P.ImageSummary.__name__
|
||||
SCALAR = P.ScalarSummary.__name__
|
||||
TENSOR = P.TensorSummary.__name__
|
||||
HISTOGRAM = P.HistogramSummary.__name__
|
||||
|
||||
|
||||
class SummaryDemoTag(nn.Cell):
|
||||
""" SummaryDemoTag definition """
|
||||
|
||||
def __init__(self, tag1, tag2, tag3):
|
||||
super(SummaryDemoTag, self).__init__()
|
||||
self.s = P.ScalarSummary()
|
||||
self.histogram_summary = P.HistogramSummary()
|
||||
class SummaryNet(nn.Cell):
|
||||
"""Summary net definition."""
|
||||
def __init__(self, summary_type, tag, data):
|
||||
super(SummaryNet, self).__init__()
|
||||
self.tag = tag
|
||||
self.data = data
|
||||
self.summary_fn = getattr(P, summary_type)()
|
||||
self.one = Tensor(np.array([1]).astype(np.float32))
|
||||
self.add = P.TensorAdd()
|
||||
self.tag1 = tag1
|
||||
self.tag2 = tag2
|
||||
self.tag3 = tag3
|
||||
|
||||
def construct(self, x, y):
|
||||
self.s(self.tag1, x)
|
||||
z = self.add(x, y)
|
||||
self.s(self.tag2, z)
|
||||
self.s(self.tag3, y)
|
||||
self.histogram_summary(self.tag1, x)
|
||||
return z
|
||||
def construct(self):
|
||||
self.summary_fn(self.tag, self.data)
|
||||
return self.add(self.one, self.one)
|
||||
|
||||
|
||||
class SummaryDemoTagForSet(nn.Cell):
|
||||
""" SummaryDemoTagForSet definition """
|
||||
class TestSummaryOps:
|
||||
"""Test summary operators."""
|
||||
summary_dir = ''
|
||||
|
||||
def __init__(self, tag_tuple):
|
||||
super(SummaryDemoTagForSet, self).__init__()
|
||||
self.s = P.ScalarSummary()
|
||||
self.histogram_summary = P.HistogramSummary()
|
||||
self.add = P.TensorAdd()
|
||||
self.tag_tuple = tag_tuple
|
||||
|
||||
def construct(self, x, y):
|
||||
z = self.add(x, y)
|
||||
for tag in self.tag_tuple:
|
||||
self.s(tag, x)
|
||||
self.histogram_summary(tag, x)
|
||||
return z
|
||||
|
||||
|
||||
class SummaryDemoValue(nn.Cell):
|
||||
""" SummaryDemoValue definition """
|
||||
|
||||
def __init__(self, value):
|
||||
super(SummaryDemoValue, self).__init__()
|
||||
self.s = P.ScalarSummary()
|
||||
self.add = P.TensorAdd()
|
||||
self.v = value
|
||||
|
||||
def construct(self, x, y):
|
||||
self.s("x", self.v)
|
||||
z = self.add(x, y)
|
||||
self.s("z", self.v)
|
||||
self.s("y", self.v)
|
||||
return z
|
||||
|
||||
|
||||
class SummaryDemoValueForSet(nn.Cell):
|
||||
""" SummaryDemoValueForSet definition """
|
||||
|
||||
def __init__(self, value, tag_tuple):
|
||||
super(SummaryDemoValueForSet, self).__init__()
|
||||
self.s = P.ScalarSummary()
|
||||
self.add = P.TensorAdd()
|
||||
self.tag_tuple = tag_tuple
|
||||
self.v = value
|
||||
|
||||
def construct(self, x, y):
|
||||
z = self.add(x, y)
|
||||
for tag in self.tag_tuple:
|
||||
self.s(tag, self.v)
|
||||
return z
|
||||
|
||||
|
||||
class HistogramSummaryNet(nn.Cell):
|
||||
"HistogramSummaryNet definition"
|
||||
|
||||
def __init__(self, value):
|
||||
self.histogram_summary = P.HistogramSummary()
|
||||
self.add = P.TensorAdd()
|
||||
self.value = value
|
||||
|
||||
def construct(self, tensors1, tensor2):
|
||||
self.histogram_summary("value", self.value)
|
||||
return self.add(tensors1, tensor2)
|
||||
|
||||
|
||||
def run_case(net):
|
||||
""" run_case """
|
||||
# step 0: create the thread
|
||||
with SummaryRecord(SUMMARY_DIR) as test_writer:
|
||||
# step 1: create the network for summary
|
||||
x = Tensor(np.array([1.1]).astype(np.float32))
|
||||
y = Tensor(np.array([1.2]).astype(np.float32))
|
||||
@classmethod
|
||||
def run_case(cls, net):
|
||||
""" run_case """
|
||||
net.set_train()
|
||||
steps = 10
|
||||
with SummaryRecord(cls.summary_dir) as test_writer:
|
||||
for i in range(1, steps):
|
||||
net()
|
||||
test_writer.record(i)
|
||||
|
||||
# step 2: create the Event
|
||||
steps = 100
|
||||
for i in range(1, steps):
|
||||
x = Tensor(np.array([1.1 + random.uniform(1, 10)]).astype(np.float32))
|
||||
y = Tensor(np.array([1.2 + random.uniform(1, 10)]).astype(np.float32))
|
||||
net(x, y)
|
||||
test_writer.record(i)
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
"""Run before class."""
|
||||
if not os.path.exists(cls.summary_dir):
|
||||
cls.summary_dir = tempfile.mkdtemp(suffix='_summary')
|
||||
|
||||
@classmethod
|
||||
def teardown_class(cls):
|
||||
"""Run after class."""
|
||||
if os.path.exists(cls.summary_dir):
|
||||
shutil.rmtree(cls.summary_dir)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"summary_type, value",
|
||||
[
|
||||
(SummaryEnum.SCALAR.value, Tensor(1)),
|
||||
(SummaryEnum.SCALAR.value, Tensor(np.array([1]))),
|
||||
(SummaryEnum.IMAGE.value, Tensor(np.array([[[[1], [2], [3], [4]]]]))),
|
||||
(SummaryEnum.TENSOR.value, Tensor(np.array([[1], [2], [3], [4]]))),
|
||||
(SummaryEnum.HISTOGRAM.value, Tensor(np.array([[1], [2], [3], [4]]))),
|
||||
])
|
||||
def test_summary_success(self, summary_type, value):
|
||||
"""Test summary success with valid tag and valid data."""
|
||||
net = SummaryNet(summary_type, tag='tag', data=value)
|
||||
TestSummaryOps.run_case(net)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"summary_type",
|
||||
[
|
||||
SummaryEnum.SCALAR.value,
|
||||
SummaryEnum.IMAGE.value,
|
||||
SummaryEnum.HISTOGRAM.value,
|
||||
SummaryEnum.TENSOR.value
|
||||
])
|
||||
def test_summary_tag_is_none(self, summary_type):
|
||||
"""Test summary tag is None, all summary operator validation rules are consistent."""
|
||||
net = SummaryNet(summary_type, tag=None, data=Tensor(0))
|
||||
with pytest.raises(TypeError):
|
||||
TestSummaryOps.run_case(net)
|
||||
|
||||
|
||||
# Test 1: use the repeat tag
|
||||
def test_summary_use_repeat_tag():
|
||||
log.debug("begin test_summary_use_repeat_tag")
|
||||
net = SummaryDemoTag("x", "x", "x")
|
||||
try:
|
||||
run_case(net)
|
||||
except:
|
||||
assert False
|
||||
else:
|
||||
assert True
|
||||
log.debug("finished test_summary_use_repeat_tag")
|
||||
@pytest.mark.parametrize(
|
||||
"summary_type",
|
||||
[
|
||||
SummaryEnum.SCALAR.value,
|
||||
SummaryEnum.IMAGE.value,
|
||||
SummaryEnum.HISTOGRAM.value,
|
||||
SummaryEnum.TENSOR.value
|
||||
])
|
||||
def test_summary_tag_is_empty_string(self, summary_type):
|
||||
"""Test summary tag is a empty string, all summary operator validation rules are consistent."""
|
||||
net = SummaryNet(summary_type, tag='', data=Tensor(0))
|
||||
with pytest.raises(ValueError):
|
||||
TestSummaryOps.run_case(net)
|
||||
|
||||
@pytest.mark.parametrize("tag", [123, True, Tensor(0)])
|
||||
def test_summary_tag_is_not_string(self, tag):
|
||||
"""Test summary tag is not a string, all summary operator validation rules are consistent."""
|
||||
# All summary operator validation rules are consistent, so we only test scalar summary.
|
||||
net = SummaryNet(SummaryEnum.SCALAR.value, tag=tag, data=Tensor(0))
|
||||
with pytest.raises(TypeError):
|
||||
TestSummaryOps.run_case(net)
|
||||
|
||||
# Test 2: repeat tag use for set summary
|
||||
def test_summary_use_repeat_tag_for_set():
|
||||
log.debug("begin test_summary_use_repeat_tag_for_set")
|
||||
net = SummaryDemoTagForSet(("x", "x", "x"))
|
||||
try:
|
||||
run_case(net)
|
||||
except:
|
||||
assert False
|
||||
else:
|
||||
assert True
|
||||
log.debug("finished test_summary_use_repeat_tag_for_set")
|
||||
@pytest.mark.parametrize("value", [123, True, 'data'])
|
||||
def test_summary_value_type_invalid(self, value):
|
||||
"""Test the type of summary value is invalid, all summary operator validation rules are consistent."""
|
||||
# All summary operator validation rules are consistent, so we only test scalar summary.
|
||||
net = SummaryNet(SummaryEnum.SCALAR.value, tag='tag', data=value)
|
||||
with pytest.raises(TypeError):
|
||||
TestSummaryOps.run_case(net)
|
||||
|
||||
|
||||
# Test3: test with invalid tag(None, bool, "", int)
|
||||
def test_summary_use_invalid_tag_None():
|
||||
log.debug("begin test_summary_use_invalid_tag_None")
|
||||
net = SummaryDemoTag(None, None, None)
|
||||
try:
|
||||
run_case(net)
|
||||
except:
|
||||
assert True
|
||||
else:
|
||||
assert False
|
||||
log.debug("finished test_summary_use_invalid_tag_None")
|
||||
|
||||
|
||||
# Test4: test with invalid tag(None, bool, "", int)
|
||||
def test_summary_use_invalid_tag_Bool():
|
||||
log.debug("begin test_summary_use_invalid_tag_Bool")
|
||||
net = SummaryDemoTag(True, True, True)
|
||||
with pytest.raises(TypeError):
|
||||
run_case(net)
|
||||
log.debug("finished test_summary_use_invalid_tag_Bool")
|
||||
|
||||
|
||||
# Test5: test with invalid tag(None, bool, "", int)
|
||||
def test_summary_use_invalid_tag_null():
|
||||
log.debug("begin test_summary_use_invalid_tag_null")
|
||||
net = SummaryDemoTag("", "", "")
|
||||
run_case(net)
|
||||
log.debug("finished test_summary_use_invalid_tag_null")
|
||||
|
||||
|
||||
# Test6: test with invalid tag(None, bool, "", int)
|
||||
def test_summary_use_invalid_tag_Int():
|
||||
log.debug("begin test_summary_use_invalid_tag_Int")
|
||||
net = SummaryDemoTag(1, 2, 3)
|
||||
with pytest.raises(TypeError):
|
||||
run_case(net)
|
||||
log.debug("finished test_summary_use_invalid_tag_Int")
|
||||
|
||||
|
||||
# Test7: test with invalid value(None, "")
|
||||
def test_scalar_summary_use_invalid_value_None():
|
||||
log.debug("begin test_scalar_summary_use_invalid_tag_Int")
|
||||
net = SummaryDemoValue(None)
|
||||
try:
|
||||
run_case(net)
|
||||
except:
|
||||
assert True
|
||||
else:
|
||||
assert False
|
||||
log.debug("finished test_scalar_summary_use_invalid_tag_Int")
|
||||
|
||||
|
||||
# Test8: test with invalid value(None, "")
|
||||
def test_scalar_summary_use_invalid_value_None_ForSet():
|
||||
log.debug("begin test_scalar_summary_use_invalid_value_None_ForSet")
|
||||
try:
|
||||
net = SummaryDemoValueForSet(None, ("x1", "x2"))
|
||||
run_case(net)
|
||||
except:
|
||||
assert True
|
||||
else:
|
||||
assert False
|
||||
log.debug("finished test_scalar_summary_use_invalid_value_None_ForSet")
|
||||
|
||||
|
||||
# Test9: test with invalid value(None, "")
|
||||
def test_scalar_summary_use_invalid_value_null():
|
||||
log.debug("begin test_scalar_summary_use_invalid_value_null")
|
||||
try:
|
||||
net = SummaryDemoValue("")
|
||||
run_case(net)
|
||||
except:
|
||||
assert True
|
||||
else:
|
||||
assert False
|
||||
log.debug("finished test_scalar_summary_use_invalid_value_null")
|
||||
|
||||
|
||||
def test_histogram_summary_use_valid_value():
|
||||
"""Test histogram summary with valid value"""
|
||||
log.debug("Begin test_histogram_summary_use_valid_value")
|
||||
try:
|
||||
net = HistogramSummaryNet(Tensor(np.array([1, 2, 3])))
|
||||
run_case(net)
|
||||
except:
|
||||
assert True
|
||||
else:
|
||||
assert False
|
||||
log.debug("Finished test_histogram_summary_use_valid_value")
|
||||
|
||||
|
||||
def test_histogram_summary_use_scalar_value():
|
||||
"""Test histogram summary use scalar value"""
|
||||
log.debug("Begin test_histogram_summary_use_scalar_value")
|
||||
try:
|
||||
scalar = Tensor(1)
|
||||
net = HistogramSummaryNet(scalar)
|
||||
run_case(net)
|
||||
except:
|
||||
assert True
|
||||
else:
|
||||
assert False
|
||||
log.debug("Finished test_histogram_summary_use_scalar_value")
|
||||
@pytest.mark.parametrize(
|
||||
"summary_type, value",
|
||||
[
|
||||
(SummaryEnum.IMAGE.value, Tensor(np.array([1, 2]))),
|
||||
(SummaryEnum.SCALAR.value, Tensor(np.array([1, 2]))),
|
||||
(SummaryEnum.TENSOR.value, Tensor(0)),
|
||||
(SummaryEnum.HISTOGRAM.value, Tensor(0))
|
||||
])
|
||||
def test_value_shape_invalid(self, summary_type, value):
|
||||
"""Test invalid shape of every summary operators."""
|
||||
net = SummaryNet(summary_type, tag='tag', data=value)
|
||||
with pytest.raises(ValueError):
|
||||
TestSummaryOps.run_case(net)
|
||||
|
|
Loading…
Reference in New Issue