!5555 Modify read me of inceptionv3

Merge pull request !5555 from zhouyaqiang0/r0.7
This commit is contained in:
mindspore-ci-bot 2020-08-31 20:38:27 +08:00 committed by Gitee
commit 4382ce202c
1 changed files with 14 additions and 12 deletions

View File

@ -35,7 +35,7 @@ The overall network architecture of InceptionV3 is show below:
Dataset used can refer to paper.
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
- Dataset size: 125G, 1250k colorful images in 1000 classes
- Train: 120G, 1200k images
- Test: 5G, 50k images
- Data format: RGB images.
@ -217,16 +217,18 @@ metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942}
### Training Performance
| Parameters | InceptionV3 | |
| Parameters | Ascend | GPU |
| -------------------------- | ---------------------------------------------- | ------------------------- |
| Model Version | V1 | V1 |
| Model Version | InceptionV3 | InceptionV3 |
| Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | NV SMI V100-16G(PCIE),cpu:2.10GHz 96cores, memory:250G |
| uploaded Date | 08/21/2020 | 08/21/2020 |
| MindSpore Version | 0.6.0-beta | 0.6.0-beta |
| Dataset | 1200k images | 1200k images |
| Batch_size | 128 | 128 |
| Training Parameters | src/config.py | src/config.py |
| Optimizer | RMSProp | RMSProp |
| Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy |
| outputs | probability | probability |
| Outputs | probability | probability |
| Loss | 1.98 | 1.98 |
| Accuracy (8p) | ACC1[78.8%] ACC5[94.2%] | ACC1[78.7%] ACC5[94.1%] |
| Total time (8p) | 11h | 72h |
@ -237,15 +239,15 @@ metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942}
#### Inference Performance
| Parameters | InceptionV3 |
| Parameters | Ascend |
| ------------------- | --------------------------- |
| Model Version | V1 |
| Resource | Ascend 910 |
| Uploaded Date | 08/22/2020 (month/day/year) |
| Model Version | InceptionV3 |
| Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G |
| Uploaded Date | 08/22/2020 |
| MindSpore Version | 0.6.0-beta |
| Dataset | 50k images |
| batch_size | 128 |
| outputs | probability |
| Batch_size | 128 |
| Outputs | probability |
| Accuracy | ACC1[78.8%] ACC5[94.2%] |
| Total time | 2mins |
| Model for inference | 92M (.onnx file) |