forked from mindspore-Ecosystem/mindspore
!5511 modify README.md
Merge pull request !5511 from wukesong/wks_read0.7
This commit is contained in:
commit
3f305b8afa
|
@ -1,57 +1,176 @@
|
|||
# AlexNet Example
|
||||
|
||||
## Description
|
||||
|
||||
Training AlexNet with dataset in MindSpore.
|
||||
|
||||
This is the simple tutorial for training AlexNet in MindSpore.
|
||||
|
||||
## Requirements
|
||||
|
||||
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||
|
||||
- Download the dataset, the directory structure is as follows:
|
||||
|
||||
```
|
||||
├─10-batches-bin
|
||||
│
|
||||
└─10-verify-bin
|
||||
```
|
||||
|
||||
## Running the example
|
||||
|
||||
```python
|
||||
# train AlexNet, hyperparameter setting in config.py
|
||||
python train.py --data_path 10-batches-bin
|
||||
```
|
||||
|
||||
You will get the loss value of each step as following:
|
||||
|
||||
```bash
|
||||
epoch: 1 step: 1, loss is 2.2791853
|
||||
...
|
||||
epoch: 1 step: 1536, loss is 1.9366643
|
||||
epoch: 1 step: 1537, loss is 1.6983616
|
||||
epoch: 1 step: 1538, loss is 1.0221305
|
||||
...
|
||||
```
|
||||
|
||||
Then, evaluate AlexNet according to network model
|
||||
```python
|
||||
# evaluate AlexNet
|
||||
python eval.py --data_path 10-verify-bin --ckpt_path checkpoint_alexnet-1_1562.ckpt
|
||||
```
|
||||
|
||||
## Note
|
||||
Here are some optional parameters:
|
||||
|
||||
```bash
|
||||
--device_target {Ascend,GPU}
|
||||
device where the code will be implemented (default: Ascend)
|
||||
--data_path DATA_PATH
|
||||
path where the dataset is saved
|
||||
--dataset_sink_mode DATASET_SINK_MODE
|
||||
dataset_sink_mode is False or True
|
||||
```
|
||||
|
||||
You can run ```python train.py -h``` or ```python eval.py -h``` to get more information.
|
||||
# Contents
|
||||
|
||||
- [AlexNet Description](#alexnet-description)
|
||||
- [Model Architecture](#model-architecture)
|
||||
- [Dataset](#dataset)
|
||||
- [Environment Requirements](#environment-requirements)
|
||||
- [Quick Start](#quick-start)
|
||||
- [Script Description](#script-description)
|
||||
- [Script and Sample Code](#script-and-sample-code)
|
||||
- [Script Parameters](#script-parameters)
|
||||
- [Training Process](#training-process)
|
||||
- [Training](#training)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Evaluation](#evaluation)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Evaluation Performance](#evaluation-performance)
|
||||
- [ModelZoo Homepage](#modelzoo-homepage)
|
||||
|
||||
|
||||
# [AlexNet Description](#contents)
|
||||
|
||||
AlexNet was proposed in 2012, one of the most influential neural networks. It got big success in ImageNet Dataset recognition than other models.
|
||||
|
||||
[Paper](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf): Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep ConvolutionalNeural Networks. *Advances In Neural Information Processing Systems*. 2012.
|
||||
|
||||
# [Model Architecture](#contents)
|
||||
|
||||
AlexNet composition consists of 5 convolutional layers and 3 fully connected layers. Multiple convolutional kernels can extract interesting features in images and get more accurate classification.
|
||||
|
||||
# [Dataset](#contents)
|
||||
|
||||
Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
||||
|
||||
- Dataset size:175M,60,000 32*32 colorful images in 10 classes
|
||||
- Train:146M,50,000 images
|
||||
- Test:29.3M,10,000 images
|
||||
- Data format:binary files
|
||||
- Note:Data will be processed in dataset.py
|
||||
- Download the dataset, the directory structure is as follows:
|
||||
|
||||
```
|
||||
├─cifar-10-batches-bin
|
||||
│
|
||||
└─cifar-10-verify-bin
|
||||
```
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
||||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
||||
# [Quick Start](#contents)
|
||||
|
||||
After installing MindSpore via the official website, you can start training and evaluation as follows:
|
||||
|
||||
```python
|
||||
# enter script dir, train AlexNet
|
||||
sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH]
|
||||
# enter script dir, evaluate AlexNet
|
||||
sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
|
||||
```
|
||||
|
||||
# [Script Description](#contents)
|
||||
|
||||
## [Script and Sample Code](#contents)
|
||||
|
||||
```
|
||||
├── cv
|
||||
├── alexnet
|
||||
├── README.md // descriptions about alexnet
|
||||
├── requirements.txt // package needed
|
||||
├── scripts
|
||||
│ ├──run_standalone_train_gpu.sh // train in gpu
|
||||
│ ├──run_standalone_train_ascend.sh // train in ascend
|
||||
│ ├──run_standalone_eval_gpu.sh // evaluate in gpu
|
||||
│ ├──run_standalone_eval_ascend.sh // evaluate in ascend
|
||||
├── src
|
||||
│ ├──dataset.py // creating dataset
|
||||
│ ├──alexnet.py // alexnet architecture
|
||||
│ ├──config.py // parameter configuration
|
||||
├── train.py // training script
|
||||
├── eval.py // evaluation script
|
||||
```
|
||||
|
||||
## [Script Parameters](#contents)
|
||||
|
||||
```python
|
||||
Major parameters in train.py and config.py as follows:
|
||||
|
||||
--data_path: The absolute full path to the train and evaluation datasets.
|
||||
--epoch_size: Total training epochs.
|
||||
--batch_size: Training batch size.
|
||||
--image_height: Image height used as input to the model.
|
||||
--image_width: Image width used as input the model.
|
||||
--device_target: Device where the code will be implemented. Optional values are "Ascend", "GPU".
|
||||
--checkpoint_path: The absolute full path to the checkpoint file saved after training.
|
||||
--data_path: Path where the dataset is saved
|
||||
```
|
||||
|
||||
## [Training Process](#contents)
|
||||
|
||||
### Training
|
||||
|
||||
```
|
||||
python train.py --data_path cifar-10-batches-bin --ckpt_path ckpt > log.txt 2>&1 &
|
||||
# or enter script dir, and run the script
|
||||
sh run_standalone_train_ascend.sh cifar-10-batches-bin ckpt
|
||||
```
|
||||
|
||||
After training, the loss value will be achieved as follows:
|
||||
|
||||
```
|
||||
# grep "loss is " train.log
|
||||
epoch: 1 step: 1, loss is 2.2791853
|
||||
...
|
||||
epoch: 1 step: 1536, loss is 1.9366643
|
||||
epoch: 1 step: 1537, loss is 1.6983616
|
||||
epoch: 1 step: 1538, loss is 1.0221305
|
||||
...
|
||||
```
|
||||
|
||||
The model checkpoint will be saved in the current directory.
|
||||
|
||||
## [Evaluation Process](#contents)
|
||||
|
||||
### Evaluation
|
||||
|
||||
Before running the command below, please check the checkpoint path used for evaluation.
|
||||
|
||||
```
|
||||
python eval.py --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-1_1562.ckpt > log.txt 2>&1 &
|
||||
or enter script dir, and run the script
|
||||
sh run_standalone_eval_ascend.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-1_1562.ckpt
|
||||
```
|
||||
|
||||
You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
|
||||
|
||||
```
|
||||
# grep "Accuracy: " log.txt
|
||||
'Accuracy': 0.8832
|
||||
```
|
||||
|
||||
# [Model Description](#contents)
|
||||
|
||||
## [Performance](#contents)
|
||||
|
||||
### Evaluation Performance
|
||||
|
||||
| Parameters | AlexNet |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Resource | Ascend 910 ;CPU 2.60GHz,56cores;Memory,314G |
|
||||
| uploaded Date | 06/09/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.5.0-beta |
|
||||
| Dataset | CIFAR-10 |
|
||||
| Training Parameters | epoch=30, steps=1562, batch_size = 32, lr=0.002 |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy |
|
||||
| outputs | probability |
|
||||
| Loss | 0.0016 |
|
||||
| Speed | 21 ms/step |
|
||||
| Total time | 17 mins |
|
||||
| Checkpoint for Fine tuning | 445M (.ckpt file) |
|
||||
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet |
|
||||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
||||
In dataset.py, we set the seed inside ```create_dataset``` function.
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
|
|
|
@ -18,6 +18,7 @@ eval alexnet according to model file:
|
|||
python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt
|
||||
"""
|
||||
|
||||
import ast
|
||||
import argparse
|
||||
from src.config import alexnet_cfg as cfg
|
||||
from src.dataset import create_dataset_cifar10
|
||||
|
@ -36,7 +37,8 @@ if __name__ == "__main__":
|
|||
parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved')
|
||||
parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\
|
||||
path where the trained ckpt file')
|
||||
parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True')
|
||||
parser.add_argument('--dataset_sink_mode', type=ast.literal_eval, default=True,
|
||||
help='dataset_sink_mode is False or True')
|
||||
args = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
||||
|
|
|
@ -18,6 +18,7 @@ train alexnet and get network model files(.ckpt) :
|
|||
python train.py --data_path /YourDataPath
|
||||
"""
|
||||
|
||||
import ast
|
||||
import argparse
|
||||
from src.config import alexnet_cfg as cfg
|
||||
from src.dataset import create_dataset_cifar10
|
||||
|
@ -38,7 +39,8 @@ if __name__ == "__main__":
|
|||
parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved')
|
||||
parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\
|
||||
path where the trained ckpt file')
|
||||
parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True')
|
||||
parser.add_argument('--dataset_sink_mode', type=ast.literal_eval, default=True,
|
||||
help='dataset_sink_mode is False or True')
|
||||
args = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
||||
|
|
|
@ -1,62 +1,186 @@
|
|||
# LeNet Example
|
||||
|
||||
## Description
|
||||
|
||||
Training LeNet with dataset in MindSpore.
|
||||
|
||||
This is the simple and basic tutorial for constructing a network in MindSpore.
|
||||
|
||||
## Requirements
|
||||
|
||||
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||
|
||||
- Download the dataset, the directory structure is as follows:
|
||||
|
||||
```
|
||||
└─Data
|
||||
├─test
|
||||
│ t10k-images.idx3-ubyte
|
||||
│ t10k-labels.idx1-ubyte
|
||||
│
|
||||
└─train
|
||||
train-images.idx3-ubyte
|
||||
train-labels.idx1-ubyte
|
||||
```
|
||||
|
||||
## Running the example
|
||||
|
||||
```python
|
||||
# train LeNet, hyperparameter setting in config.py
|
||||
python train.py --data_path Data
|
||||
```
|
||||
|
||||
You will get the loss value of each step as following:
|
||||
|
||||
```bash
|
||||
epoch: 1 step: 1, loss is 2.3040335
|
||||
...
|
||||
epoch: 1 step: 1739, loss is 0.06952668
|
||||
epoch: 1 step: 1740, loss is 0.05038793
|
||||
epoch: 1 step: 1741, loss is 0.05018193
|
||||
...
|
||||
```
|
||||
|
||||
Then, evaluate LeNet according to network model
|
||||
```python
|
||||
# evaluate LeNet
|
||||
python eval.py --data_path Data --ckpt_path checkpoint_lenet-1_1875.ckpt
|
||||
```
|
||||
|
||||
## Note
|
||||
Here are some optional parameters:
|
||||
|
||||
```bash
|
||||
--device_target {Ascend,GPU,CPU}
|
||||
device where the code will be implemented (default: Ascend)
|
||||
--data_path DATA_PATH
|
||||
path where the dataset is saved
|
||||
--dataset_sink_mode DATASET_SINK_MODE
|
||||
dataset_sink_mode is False or True
|
||||
```
|
||||
|
||||
You can run ```python train.py -h``` or ```python eval.py -h``` to get more information.
|
||||
# Contents
|
||||
|
||||
- [LeNet Description](#lenet-description)
|
||||
- [Model Architecture](#model-architecture)
|
||||
- [Dataset](#dataset)
|
||||
- [Environment Requirements](#environment-requirements)
|
||||
- [Quick Start](#quick-start)
|
||||
- [Script Description](#script-description)
|
||||
- [Script and Sample Code](#script-and-sample-code)
|
||||
- [Script Parameters](#script-parameters)
|
||||
- [Training Process](#training-process)
|
||||
- [Training](#training)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Evaluation](#evaluation)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Evaluation Performance](#evaluation-performance)
|
||||
- [ModelZoo Homepage](#modelzoo-homepage)
|
||||
|
||||
|
||||
# [LeNet Description](#contents)
|
||||
|
||||
LeNet was proposed in 1998, a typical convolutional neural network. It was used for digit recognition and got big success.
|
||||
|
||||
[Paper](https://ieeexplore.ieee.org/document/726791): Y.Lecun, L.Bottou, Y.Bengio, P.Haffner. Gradient-Based Learning Applied to Document Recognition. *Proceedings of the IEEE*. 1998.
|
||||
|
||||
# [Model Architecture](#contents)
|
||||
|
||||
LeNet is very simple, which contains 5 layers. The layer composition consists of 2 convolutional layers and 3 fully connected layers.
|
||||
|
||||
# [Dataset](#contents)
|
||||
|
||||
Dataset used: [MNIST](<http://yann.lecun.com/exdb/mnist/>)
|
||||
|
||||
- Dataset size:52.4M,60,000 28*28 in 10 classes
|
||||
- Train:60,000 images
|
||||
- Test:10,000 images
|
||||
- Data format:binary files
|
||||
- Note:Data will be processed in dataset.py
|
||||
|
||||
- The directory structure is as follows:
|
||||
|
||||
```
|
||||
└─Data
|
||||
├─test
|
||||
│ t10k-images.idx3-ubyte
|
||||
│ t10k-labels.idx1-ubyte
|
||||
│
|
||||
└─train
|
||||
train-images.idx3-ubyte
|
||||
train-labels.idx1-ubyte
|
||||
```
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
||||
- Hardware(Ascend/GPU/CPU)
|
||||
- Prepare hardware environment with Ascend, GPU, or CPU processor.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
||||
# [Quick Start](#contents)
|
||||
|
||||
After installing MindSpore via the official website, you can start training and evaluation as follows:
|
||||
|
||||
```python
|
||||
# enter script dir, train LeNet
|
||||
sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH]
|
||||
# enter script dir, evaluate LeNet
|
||||
sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
|
||||
```
|
||||
|
||||
# [Script Description](#contents)
|
||||
|
||||
## [Script and Sample Code](#contents)
|
||||
|
||||
```
|
||||
├── cv
|
||||
├── lenet
|
||||
├── README.md // descriptions about lenet
|
||||
├── requirements.txt // package needed
|
||||
├── scripts
|
||||
│ ├──run_standalone_train_cpu.sh // train in cpu
|
||||
│ ├──run_standalone_train_gpu.sh // train in gpu
|
||||
│ ├──run_standalone_train_ascend.sh // train in ascend
|
||||
│ ├──run_standalone_eval_cpu.sh // evaluate in cpu
|
||||
│ ├──run_standalone_eval_gpu.sh // evaluate in gpu
|
||||
│ ├──run_standalone_eval_ascend.sh // evaluate in ascend
|
||||
├── src
|
||||
│ ├──dataset.py // creating dataset
|
||||
│ ├──lenet.py // lenet architecture
|
||||
│ ├──config.py // parameter configuration
|
||||
├── train.py // training script
|
||||
├── eval.py // evaluation script
|
||||
```
|
||||
|
||||
## [Script Parameters](#contents)
|
||||
|
||||
```python
|
||||
Major parameters in train.py and config.py as follows:
|
||||
|
||||
--data_path: The absolute full path to the train and evaluation datasets.
|
||||
--epoch_size: Total training epochs.
|
||||
--batch_size: Training batch size.
|
||||
--image_height: Image height used as input to the model.
|
||||
--image_width: Image width used as input the model.
|
||||
--device_target: Device where the code will be implemented. Optional values
|
||||
are "Ascend", "GPU", "CPU".
|
||||
--checkpoint_path: The absolute full path to the checkpoint file saved
|
||||
after training.
|
||||
--data_path: Path where the dataset is saved
|
||||
```
|
||||
|
||||
## [Training Process](#contents)
|
||||
|
||||
### Training
|
||||
|
||||
```
|
||||
python train.py --data_path Data --ckpt_path ckpt > log.txt 2>&1 &
|
||||
or enter script dir, and run the script
|
||||
sh run_standalone_train_ascend.sh Data ckpt
|
||||
```
|
||||
|
||||
After training, the loss value will be achieved as follows:
|
||||
|
||||
```
|
||||
# grep "loss is " log.txt
|
||||
epoch: 1 step: 1, loss is 2.2791853
|
||||
...
|
||||
epoch: 1 step: 1536, loss is 1.9366643
|
||||
epoch: 1 step: 1537, loss is 1.6983616
|
||||
epoch: 1 step: 1538, loss is 1.0221305
|
||||
...
|
||||
```
|
||||
|
||||
The model checkpoint will be saved in the current directory.
|
||||
|
||||
## [Evaluation Process](#contents)
|
||||
|
||||
### Evaluation
|
||||
|
||||
Before running the command below, please check the checkpoint path used for evaluation.
|
||||
|
||||
```
|
||||
python eval.py --data_path Data --ckpt_path ckpt/checkpoint_lenet-1_1875.ckpt > log.txt 2>&1 &
|
||||
or enter script dir, and run the script
|
||||
sh run_standalone_eval_ascend.sh Data ckpt/checkpoint_lenet-1_1875.ckpt
|
||||
```
|
||||
|
||||
You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
|
||||
|
||||
```
|
||||
# grep "Accuracy: " log.txt
|
||||
'Accuracy': 0.9842
|
||||
```
|
||||
|
||||
# [Model Description](#contents)
|
||||
|
||||
## [Performance](#contents)
|
||||
|
||||
### Evaluation Performance
|
||||
|
||||
| Parameters | LeNet |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Resource | Ascend 910 ;CPU 2.60GHz,56cores;Memory,314G |
|
||||
| uploaded Date | 06/09/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.5.0-beta |
|
||||
| Dataset | MNIST |
|
||||
| Training Parameters | epoch=10, steps=1875, batch_size = 32, lr=0.01 |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy |
|
||||
| outputs | probability |
|
||||
| Loss | 0.002 |
|
||||
| Speed | 1.70 ms/step |
|
||||
| Total time | 43.1s | |
|
||||
| Checkpoint for Fine tuning | 482k (.ckpt file) |
|
||||
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet |
|
||||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
||||
In dataset.py, we set the seed inside ```create_dataset``` function.
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
|
|
|
@ -19,6 +19,7 @@ python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt
|
|||
"""
|
||||
|
||||
import os
|
||||
import ast
|
||||
import argparse
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
|
@ -37,7 +38,8 @@ if __name__ == "__main__":
|
|||
help='path where the dataset is saved')
|
||||
parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide\
|
||||
path where the trained ckpt file')
|
||||
parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True')
|
||||
parser.add_argument('--dataset_sink_mode', type=ast.literal_eval, default=False,
|
||||
help='dataset_sink_mode is False or True')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
|
|
@ -19,6 +19,7 @@ python train.py --data_path /YourDataPath
|
|||
"""
|
||||
|
||||
import os
|
||||
import ast
|
||||
import argparse
|
||||
from src.config import mnist_cfg as cfg
|
||||
from src.dataset import create_dataset
|
||||
|
@ -38,7 +39,8 @@ if __name__ == "__main__":
|
|||
help='path where the dataset is saved')
|
||||
parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\
|
||||
path where the trained ckpt file')
|
||||
parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True')
|
||||
parser.add_argument('--dataset_sink_mode', type=ast.literal_eval, default=True,
|
||||
help='dataset_sink_mode is False or True')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
|
|
@ -175,7 +175,7 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.
|
|||
| Parameters | | | |
|
||||
| -------------------------- | ----------------------------- | ------------------------- | -------------------- |
|
||||
| Model Version | V1 | | |
|
||||
| Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 |
|
||||
| Resource | Ascend 910 | NV SMX2 V100-32G | Ascend 310 |
|
||||
| uploaded Date | 05/06/2020 | 05/22/2020 | |
|
||||
| MindSpore Version | 0.2.0 | 0.2.0 | 0.2.0 |
|
||||
| Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |
|
||||
|
|
|
@ -48,6 +48,7 @@ Dataset used: [imagenet](http://www.image-net.org/)
|
|||
## [Mixed Precision](#contents)
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
@ -228,7 +229,7 @@ acc=93.88%(TOP5)
|
|||
|
||||
| Parameters | | | |
|
||||
| -------------------------- | ----------------------------- | ------------------------- | -------------------- |
|
||||
| Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 |
|
||||
| Resource | Ascend 910 | NV SMX2 V100-32G | Ascend 310 |
|
||||
| uploaded Date | 06/30/2020 | 07/23/2020 | 07/23/2020 |
|
||||
| MindSpore Version | 0.5.0 | 0.6.0 | 0.6.0 |
|
||||
| Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |
|
||||
|
|
Loading…
Reference in New Issue