!47223 modify math format

Merge pull request !47223 from 俞涵/code_docs_2.0.0al
This commit is contained in:
i-robot 2022-12-27 03:18:02 +00:00 committed by Gitee
commit 3d40eceef6
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
40 changed files with 107 additions and 107 deletions

View File

@ -92,7 +92,7 @@ mindspore.common.initializer
.. py:class:: mindspore.common.initializer.XavierNormal(gain=1)
生成一个服从Xarvier正态分布的随机数组:math:`{N}(0, \text{sigma}^2)` 用于初始化Tensor其中
生成一个服从Xarvier正态分布的随机数组 :math:`{N}(0, \text{sigma}^2)` 用于初始化Tensor其中
.. math::
sigma = gain * \sqrt{\frac{2}{n_{in} + n_{out}}}

View File

@ -31,7 +31,7 @@ mindspore.ops.AlltoAll
:math:`y_{concat\_dim} = x_{concat\_dim} * split\_count`
:math:`y_other = x_other`.
:math:`y\_other = x\_other`.
异常:
- **TypeError** - 如果 `group` 不是字符串。

View File

@ -7,19 +7,19 @@
输入:
- **x_indices** (Tensor) - 二维Tensor表示稀疏Tensor中非零元素的索引所有元素的取值都是非负的。数据类型为int64。
其shape可表示为math: `(y, x)`
其shape可表示为 :math:`(y, x)`
- **x_values** (Tensor) - 一维Tensor表示与 `y_indices` 中的索引对应的值。支持的数据类型为float16、float32。
其shape可表示为math: `(x,)`
其shape可表示为 :math:`(x,)`
- **x_shape** (Tensor) - 一维Tensor代表稀疏Tensor的shape。数据类型为int64。
其shape可表示为math: `(y,)`
其shape可表示为 :math:`(y,)`
输出:
- **y_indices** (Tensor) - 二维Tensor表示稀疏Tensor中非零元素的索引所有元素的取值都是非负的。数据类型为int64。
其shape可表示为math: `(y, z)` `z` 代表 `x_indices` 中不同索引的数量。
其shape可表示为 :math:`(y, z)` `z` 代表 `x_indices` 中不同索引的数量。
- **y_values** (Tensor) - 一维Tensor表示与 `y_indices` 中的索引对应的值。数据类型与 `x_values` 保持一致。
其shape可表示为math: `(z,)`
其shape可表示为 :math:`(z,)`
- **y_shape** (Tensor) - 一维Tensor代表稀疏Tensor的shape。数据类型为int64。
其shape可表示为math: `(y,)`
其shape可表示为 :math:`(y,)`
异常:
- **TypeError** - 输入 `x_values` 的数据类型不是float32或float16之一。

View File

@ -6,12 +6,12 @@ mindspore.ops.HSVToRGB
将一个或多个图像从HSV转换为RGB。图像的格式应为NHWC。
输入:
- **x** (Tensor) - 输入的图像必须是shape为 :math:`[batch, image_height, image_width, channel]` 的4维Tensor。
- **x** (Tensor) - 输入的图像必须是shape为 :math:`[batch, image\_height, image\_width, channel]` 的4维Tensor。
channel 值必须为3。
支持的类型float16、float32、float64。
输出:
一个4-D Tensorshape为 :math:`[batch, image_height, image_width, channel]` ,且数据类型同输入一致。
一个4-D Tensorshape为 :math:`[batch, image\_height, image\_width, channel]` ,且数据类型同输入一致。
异常:
- **TypeError** - 如果 `x` 不是一个Tensor。

View File

@ -5,7 +5,7 @@ mindspore.ops.IdentityN
返回与输入具有相同shape和值的tuple(Tensor)。
此操作可用于覆盖复杂函数的梯度。例如,假设 :math: `y = f(x)`
此操作可用于覆盖复杂函数的梯度。例如,假设 :math:`y = f(x)`
我们希望为反向传播应用自定义函数g:math:`dx=g(dy)`
输入:

View File

@ -36,9 +36,9 @@ mindspore.ops.Im2Col
- **pads** (Union[int, tuple[int], list[int]],可选) - 窗口的填充必须是1个、2个或4个整数来指定高宽和宽度方向的填充。默认值0。
- 如果是1个整数:math:`pad_height = pad_width` 。
- 如果是2个整数:math:`pad_height = pads[0]`, :math:`pad_width = pads[1]` 。
- 如果是4个整数:math:`pads = [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]` 。
- 如果是1个整数:math:`pad\_height = pad\_width` 。
- 如果是2个整数:math:`pad\_height = pads[0]`, :math:`pad\_width = pads[1]` 。
- 如果是4个整数:math:`pads = [pad\_height\_top, pad\_height\_bottom, pad\_width\_left, pad\_width\_right]` 。
输入:
- **x** (Tensor) - 输入Tensor只支持4-D Tensor(1个batch的图像Tensor)。支持所有的实数类型。

View File

@ -27,5 +27,5 @@ mindspore.ops.LuUnpack
- **ValueError** - 若 `LU_pivots` 的维度小于1。
- **ValueError** - 若 `LU_pivots` 最后一维的大小不等于 `LU_data` 的最后两维的较小者。
- **ValueError** - 若 `lu_data``LU_pivots` 的batch维度不匹配。
- **ValueError** - 在CPU平台上`LU_pivots` 的值不在 :math:`[1, LU_data.shape[-2]]` 范围内。
- **RuntimeError** - 在Ascend平台上`LU_pivots` 的值不在 :math:`[1, LU_data.shape[-2]]` 范围内。
- **ValueError** - 在CPU平台上`LU_pivots` 的值不在 :math:`[1, LU\_data.shape[-2]]` 范围内。
- **RuntimeError** - 在Ascend平台上`LU_pivots` 的值不在 :math:`[1, LU\_data.shape[-2]]` 范围内。

View File

@ -4,7 +4,7 @@ mindspore.ops.MatrixPower
.. py:class:: mindspore.ops.MatrixPower
计算一个batch的方阵的n次幂。
如果 :math: `n=0` 则返回一个batch的单位矩阵。
如果 :math:`n=0` 则返回一个batch的单位矩阵。
如果n为负数则为返回每个矩阵如果可逆逆矩阵的 :math:`abs(n)` 次幂。
参数:

View File

@ -6,9 +6,9 @@ mindspore.ops.MatrixSetDiagV3
返回具有新的对角线值的批处理矩阵Tensor。
给定输入 `x` 和对角线 `diagonal` ,此操作返回与 `x` 具有相同shape和值的Tensor但返回的Tensor除开最内层矩阵的对角线
这些值将被对角线中的值覆盖。如果某些对角线比 `max_diag_len` 短,则需要被填充,其中 `max_diag_len` 指对角线的最长长度。
`diagonal` 的维度 :math:`shape[-2]` 必须等于对角线个数 `num_diags` :math:`num_diags = k[1] - k[0] + 1`
`diagonal` 的维度 :math:`shape[-2]` 必须等于对角线个数 `num_diags` :math:`num\_diags = k[1] - k[0] + 1`
`diagonal` 的维度 :math:`shape[-1]` 必须等于最长对角线值 `max_diag_len`
:math:`max_diag_len = min(x.shape[-2] + min(k[1], 0), x.shape[-1] + min(-k[0], 0))` 。
:math:`max\_diag\_len = min(x.shape[-2] + min(k[1], 0), x.shape[-1] + min(-k[0], 0))` 。
`x` 具有 `r + 1`:math:`[I, J, ..., L, M, N]`
`k` 是整数或 :math:`k[0] == k[1]` 时,对角线 `diagonal` 的shape为 :math:`[I, J, ..., L, max\_diag\_len]`
否则其shape为 :math:`[I, J, ... L, num\_diags, max\_diag\_len]`
@ -48,7 +48,7 @@ mindspore.ops.MatrixSetDiagV3
- **ValueError** - 对角线 `diagonal` 的维度与输入 `x` 的维度不匹配。
- **ValueError** - 对角线 `diagonal` 的shape与输入 `x` 不匹配。
- **ValueError** - 对角线 `diagonal` 的维度 :math:`shape[-2]` 不等于与对角线个数 `num_diags`
:math:`num_diags = k[1]-k[0]+1` 。
:math:`num\_diags = k[1]-k[0]+1` 。
- **ValueError** - `k` 的取值不在 :math:`(-x.shape[-2], x.shape[-1])` 范围内。
- **ValueError** - 对角线 `diagonal` 的维度 :math:`shape[-1]` 不等于最长对角线长度 `max_diag_len`
:math:`max_diag_len = min(x.shape[-2] + min(k[1], 0), x.shape[-1] + min(-k[0], 0))` 。
:math:`max\_diag\_len = min(x.shape[-2] + min(k[1], 0), x.shape[-1] + min(-k[0], 0))` 。

View File

@ -34,7 +34,7 @@ mindspore.ops.MaxUnpool2D
- **output_shape** (tuple[int],可选) - 一个可选的输入,指定目标输出的尺寸。默认值:()。
- 如果 `output_shape == ()` 则输出的shape由 `kszie``strides``pads` 计算得到。
- 如果 :math:`output_shape != ()` ,则 `output_shape` 必须为 :math:`(N, C, H, W)`:math:`(N, H, W, C)`
- 如果 :math:`output\_shape != ()` ,则 `output_shape` 必须为 :math:`(N, C, H, W)`:math:`(N, H, W, C)`
同时 `output_shape` 必须属于 :math:`[(N, C, H_{out} - strides[0], W_{out} - strides[1]), (N, C, H_{out} + strides[0], W_{out} + strides[1])]`
- **data_format** (str可选) - 可选的数据格式。当前支持 `NCHW``NHWC` 。默认值: `NCHW`

View File

@ -13,8 +13,8 @@ mindspore.ops.NonMaxSuppressionV3
- 对于坐标系的正交变换和平移,该算法不受影响,因此坐标系的平移变换后算法会选择相同的框。
输入:
- **boxes** (Tensor) - 二维Tensorshape为 :math:`(num_boxes, 4)` 。
- **scores** (Tensor) - 一维Tensor其shape为 :math:`(num_boxes)` 。表示对应每一行每个方框的score值 `scores``boxes` 的num_boxes必须相等。支持的数据类型为float32。
- **boxes** (Tensor) - 二维Tensorshape为 :math:`(num\_boxes, 4)` 。
- **scores** (Tensor) - 一维Tensor其shape为 :math:`(num\_boxes)` 。表示对应每一行每个方框的score值 `scores``boxes` 的num_boxes必须相等。支持的数据类型为float32。
- **max_output_size** (Union[Tensor, Number.Int]) - 选取最大的边框数必须大于等于0数据类型为int32。
- **iou_threshold** (Union[Tensor, Number.Float]) - 边框重叠值阈值重叠值大于此值说明重叠过大其值必须大于等于0小于等于1。支持的数据类型为float32。
- **score_threshold** (Union[Tensor, Number.Float]) - 移除边框阈值边框score值大于此值则移除相应边框。支持的数据类型为float32。

View File

@ -10,8 +10,8 @@ mindspore.ops.NonMaxSuppressionWithOverlaps
- 对于坐标系的正交变换和平移,该算法不受影响;因此坐标系的平移变换后算法会选择相同的框。
输入:
- **overlaps** (Tensor) - 二维Tensor其shape为 :math:`(num_boxes, num_boxes)` 表示n乘n的边框重叠值。支持的数据类型为float32。
- **scores** (Tensor) - 一维Tensor其shape为 :math:`(num_boxes)` 。表示对应每一行每个方框的score值 `scores``overlaps` 的num_boxes必须相等。支持的数据类型为float32。
- **overlaps** (Tensor) - 二维Tensor其shape为 :math:`(num\_boxes, num_boxes)` 表示n乘n的边框重叠值。支持的数据类型为float32。
- **scores** (Tensor) - 一维Tensor其shape为 :math:`(num\_boxes)` 。表示对应每一行每个方框的score值 `scores``overlaps` 的num_boxes必须相等。支持的数据类型为float32。
- **max_output_size** (Union[Tensor, Number.Int]) - 选取最大的边框数必须大于等于0数据类型为int32。
- **overlap_threshold** (Union[Tensor, Number.Float]) - 边框重叠值阈值重叠值大于此值说明重叠过大。支持的数据类型为float32。
- **score_threshold** (Union[Tensor, Number.Float]) - 移除边框阈值边框score值大于此值则移除相应边框。支持的数据类型为float32。

View File

@ -12,7 +12,7 @@ mindspore.ops.NuclearNorm
根据 `dim` 列表输入Tensor根据 `dim` 重新排列。 `dim` 指定的两个维度将被放在末尾其他维度的顺序相对不变。对每个调整后的Tensor的切片执行SVD以获得奇异值将所有奇异值求和即为获得核规范。
参数:
- **dim** (Union[list(int), tuple(int)],可选) - 指定计算 `x` 矩阵核范数的哪两个维度,如果 `dim` 为None则核规范将在输入所有维度上计算。 `dim` 的长度应该是2其值应在此范围内:math:`[-x_rank,x_rank)` 。x_rank是 `x` 的维度。dim[0]和dim[1]的值不能指向相同的维度。默认值None。
- **dim** (Union[list(int), tuple(int)],可选) - 指定计算 `x` 矩阵核范数的哪两个维度,如果 `dim` 为None则核规范将在输入所有维度上计算。 `dim` 的长度应该是2其值应在此范围内:math:`[-x\_rank,x\_rank)` 。x_rank是 `x` 的维度。dim[0]和dim[1]的值不能指向相同的维度。默认值None。
- **keepdim** (bool可选) - 输出Tensor是否保留维度。默认值False。
输入:
@ -31,6 +31,6 @@ mindspore.ops.NuclearNorm
- **ValueError** - 指定的 `dim` 的长度不等于2。
- **ValueError** - 没有指定 `dim` 的时候, `x` 的维度不等于2。
- **ValueError** - `dim[0]``dim[1]` 指向相同的维度。
- **ValueError** - `dim[0]` 或者 `dim[1]` 超出范围::math:`[-x_rank, x_rank)` 其中x_rank 为 `x` 的维度。
- **ValueError** - `dim[0]` 或者 `dim[1]` 超出范围::math:`[-x\_rank, x\_rank)` 其中x_rank 为 `x` 的维度。

View File

@ -11,7 +11,7 @@ mindspore.ops.PSROIPooling
- **output_dim** (int) -执行池化后输出的维度。
输入:
- **features** (Tensor) - 输入特征Tensor其shape必须为 :math:`(N, C, H, W)` 。 各维度的值应满足: :math:`(C == output_dim * group_size * group_size)` 。数据类型为float16或者float32。
- **features** (Tensor) - 输入特征Tensor其shape必须为 :math:`(N, C, H, W)` 。 各维度的值应满足: :math:`(C == output\_dim * group\_size * group\_size)` 。数据类型为float16或者float32。
- **rois** (Tensor) - 其shape为 :math:`(batch, 5, rois_n)` 数据类型为float16或者float32。第一个维度的batch为批处理大小。第二个维度的大小必须为5。第三维度rois_n是rois的数量。rois_n的值格式为(index, x1, y1, x2, y2)。其中第一个元素是rois的索引。方框坐标格式为(x1、y1、x2、y2)之后将把这些方框的选中的区域提取出来。区域坐标必须满足0 <= x1 < x2和0 <= y1 < y2。
输出:
@ -22,5 +22,5 @@ mindspore.ops.PSROIPooling
- **TypeError** - `group_size` 或者 `output_dim` 不是 int类型。
- **TypeError** - `features` 或者 `rois` 不是Tensor。
- **TypeError** - `rois` 数据类型不是float16或者float32。
- **ValueError** - `features` 的shape不满足 :math:`(C == output_dim * group_size * group_size)` 。
- **ValueError** - `features` 的shape不满足 :math:`(C == output\_dim * group\_size * group\_size)` 。
- **ValueError** - `spatial_scale` 为负数。

View File

@ -4,7 +4,7 @@ mindspore.ops.ParameterizedTruncatedNormal
.. py:class:: mindspore.ops.ParameterizedTruncatedNormal(seed=0, seed2=0)
返回一个具有指定shape的Tensor其数值取自截断正态分布。
当其shape为 :math:`(batch_size, *)` 的时候, `mean``stdevs``min``max` 的shape应该为 :math:`()` 或者 :math:`(batch_size, )` 。
当其shape为 :math:`(batch\_size, *)` 的时候, `mean``stdevs``min``max` 的shape应该为 :math:`()` 或者 :math:`(batch\_size, )` 。
.. note::
在广播之后,在任何位置, `min` 的值必须严格小于 `max` 的值。
@ -27,7 +27,7 @@ mindspore.ops.ParameterizedTruncatedNormal
- **TypeError** - `shape``mean``stdevs``min``max` 数据类型不支持。
- **TypeError** - `mean``stdevs``min``max` 的shape不一致。
- **TypeError** - `shape``mean``stdevs``min``max` 不全是Tensor。
- **ValueError** - 当其 `shape`:math:`(batch_size, *)` 时, `mean``stdevs``min` 或者 `max` 的shape不是 :math:`()` 或者 :math:`(batch_size, )` 。
- **ValueError** - 当其 `shape`:math:`(batch\_size, *)` 时, `mean``stdevs``min` 或者 `max` 的shape不是 :math:`()` 或者 :math:`(batch\_size, )` 。
- **ValueError** - `shape` 的元素不全大于零。
- **ValueError** - `stdevs` 的值不全大于零。
- **ValueError** - `shape` 的的元素个数小于2。

View File

@ -14,7 +14,7 @@ mindspore.ops.ScaleAndTranslate
- **antialias** (bool可选) - 决定是否使用抗锯齿。默认值True。
输入:
- **images** (Tensor) - 4维Tensorshape为 :math:`(batch, image_height, image_width, channel)` 。
- **images** (Tensor) - 4维Tensorshape为 :math:`(batch, image\_height, image\_width, channel)` 。
- **size** (Tensor) - 缩放和平移操作后输出图像的大小。包含两个正数的的一维Tensor形状必须为 :math:`(2,)` 数据类型为int32。
- **scale** (Tensor) - 指示缩放因子。包含两个正数的的一维Tensor形状必须为 :math:`(2,)` 数据类型为int32。
- **translation** (Tensor) - 平移像素值。包含两个数的的一维Tensor形状必须为 :math:`(2,)` 数据类型为float32。

View File

@ -3,7 +3,7 @@ mindspore.ops.TrilIndices
.. py:class:: mindspore.ops.TrilIndices(row, col, offset=0, dtype=mstype.int32)
返回一个包含 `row` * `col` 的矩阵的下三角形部分的索引的Tensor。Tensor的shape为 :math:`(2, tril_size)` ,其中, `tril_size` 为下三角矩阵的元素总数。第一行包含所有索引的行坐标,第二行包含列坐标。索引按行排序,然后按列排序。
返回一个包含 `row` * `col` 的矩阵的下三角形部分的索引的Tensor。Tensor的shape为 :math:`(2, tril\_size)` ,其中, `tril_size` 为下三角矩阵的元素总数。第一行包含所有索引的行坐标,第二行包含列坐标。索引按行排序,然后按列排序。
矩阵的下三角形部分定义为对角线本身和对角线以下的元素。
@ -17,7 +17,7 @@ mindspore.ops.TrilIndices
- **dtype** (:class:`mindspore.dtype`, 可选) - 指定输出Tensor数据类型支持的数据类型为 `mstype.int32``mstype.int64` ,默认值: `mstype.int32`
输出:
- **y** (Tensor) - 矩阵的下三角形部分的索引。数据类型由 `dtype` 指定shape为 :math:`(2, tril_size)` ,其中, `tril_size` 为下三角矩阵的元素总数。
- **y** (Tensor) - 矩阵的下三角形部分的索引。数据类型由 `dtype` 指定shape为 :math:`(2, tril\_size)` ,其中, `tril_size` 为下三角矩阵的元素总数。
异常:
- **TypeError** - 如果 `row``col``offset` 不是int。

View File

@ -5,7 +5,7 @@ mindspore.ops.TripletMarginLoss
三元组损失函数。
创建一个标准用于计算输入Tensor :math:`x`:math:`x2`:math:`x3` 与大于:math:`0``margin` 之间的三元组损失值。
创建一个标准用于计算输入Tensor :math:`x`:math:`x2`:math:`x3` 与大于 :math:`0``margin` 之间的三元组损失值。
可以用来测量样本之间的相似度。一个三元组包含 `a``p``n` (即分别代表示 `anchor``positive examples``negative examples` )。
所有输入Tensor的shape都应该为 :math:`(N, D)`
距离交换在V. Balntas、E. Riba等人在论文 `Learning local feature descriptors with triplets and shallow convolutional neural networks <http://158.109.8.37/files/BRP2016.pdf>`_ 中有详细的阐述。

View File

@ -3,7 +3,7 @@ mindspore.ops.TriuIndices
.. py:class:: mindspore.ops.TriuIndices(row, col, offset=0, dtype=mstype.int32)
返回一个包含 `row` * `col` 的矩阵的上三角形部分的索引的Tensor。Tensor的shape为 :math:`(2, tril_size)` ,其中, `tril_size` 为上三角矩阵的元素总数。第一行包含所有索引的行坐标,第二行包含列坐标。索引按行排序,然后按列排序。
返回一个包含 `row` * `col` 的矩阵的上三角形部分的索引的Tensor。Tensor的shape为 :math:`(2, tril\_size)` ,其中, `tril_size` 为上三角矩阵的元素总数。第一行包含所有索引的行坐标,第二行包含列坐标。索引按行排序,然后按列排序。
矩阵的下三角形部分定义为对角线本身和对角线以上的元素。
@ -17,7 +17,7 @@ mindspore.ops.TriuIndices
- **dtype** (:class:`mindspore.dtype`,可选) - 指定输出Tensor数据类型支持的数据类型为 `mstype.int32``mstype.int64` ,默认值: `mstype.int32`
输出:
- **y** (Tensor) - 矩阵的下三角形部分的索引。数据类型由 `dtype` 指定shape为 :math:`(2, tril_size)` ,其中, `tril_size` 为上三角矩阵的元素总数。
- **y** (Tensor) - 矩阵的下三角形部分的索引。数据类型由 `dtype` 指定shape为 :math:`(2, tril\_size)` ,其中, `tril_size` 为上三角矩阵的元素总数。
异常:
- **TypeError** - 如果 `row``col``offset` 不是int。

View File

@ -6,8 +6,8 @@ mindspore.ops.cdist
计算两个Tensor每对列向量之间的p-norm距离。
参数:
- **x** (Tensor) - 输入Tensorshape为 :math: `(B, P, M)` B维度为0时该维度被忽略shape为 :math:`(P, M)` 。在GPU上支持数据类型为[float32, float64]在CPU上支持[float32]。
- **y** (Tensor) - 输入Tensorshape为 :math: `(B, R, M)` ,与 `x` 的数据类型一致。
- **x** (Tensor) - 输入Tensorshape为 :math:`(B, P, M)` B维度为0时该维度被忽略shape为 :math:`(P, M)` 。在GPU上支持数据类型为[float32, float64]在CPU上支持[float32]。
- **y** (Tensor) - 输入Tensorshape为 :math:`(B, R, M)` ,与 `x` 的数据类型一致。
- **p** (float可选) - 计算向量对p-norm距离的P值P∈[0∞]。默认值:2.0。
返回:

View File

@ -11,7 +11,7 @@ mindspore.ops.crop_and_resize
参数:
- **image** (Tensor) - shape为 :math:`(batch, image\_height, image\_width, depth)` 的图像Tensor。数据类型int8, int16, int32, int64, float16, float32, float64, uint8, uint16。
- **boxes** (Tensor) - shape为 :math:`(num_boxes, 4)` 的2维Tensor。其中:math:`i` 行指定对第 :math:`\text{box_indices[i]}` 张图像裁剪时的归一化坐标 :math:`[y1, x1, y2, x2]`,那么通过归一化的 :math:`y` 坐标值可映射到的图像坐标为 :math:`y * (image\_height - 1)`,因此,归一化的图像高度 :math:`[0, 1]` 间隔映射到的图像高度间隔为 :math:`[0, image\_height - 1]`。我们也允许 :math:`y1 > y2`,这种情况下,就是对图像进行的上下翻转,宽度方向与此类似。同时,我们也允许归一化的坐标值超出 :math:`[0, 1]` 的区间,这种情况下,采用 :math:`\text{extrapolation_value}` 进行填充。数据类型float32。
- **boxes** (Tensor) - shape为 :math:`(num\_boxes, 4)` 的2维Tensor。其中:math:`i` 行指定对第 :math:`\text{box_indices[i]}` 张图像裁剪时的归一化坐标 :math:`[y1, x1, y2, x2]`,那么通过归一化的 :math:`y` 坐标值可映射到的图像坐标为 :math:`y * (image\_height - 1)`,因此,归一化的图像高度 :math:`[0, 1]` 间隔映射到的图像高度间隔为 :math:`[0, image\_height - 1]`。我们也允许 :math:`y1 > y2`,这种情况下,就是对图像进行的上下翻转,宽度方向与此类似。同时,我们也允许归一化的坐标值超出 :math:`[0, 1]` 的区间,这种情况下,采用 :math:`\text{extrapolation_value}` 进行填充。数据类型float32。
- **box_indices** (Tensor) - shape为 :math:`(num\_boxes)` 的1维Tensor其中每一个元素必须是 :math:`[0, batch)` 区间内的值。:math:`\text{box_indices[i]}` 指定 :math:`\text{boxes[i, :]}` 所指向的图像索引。数据类型int32。
- **crop_size** (Tuple[int]) - 2元组(crop_height, crop_width)该输入必须为常量并且均为正值。指定对裁剪出的图像进行调整时的输出大小纵横比可与原图不一致。数据类型int32。
- **method** (str可选) - 指定调整大小时的采样方法,取值为"bilinear"、 "nearest"或"bilinear_v2",其中,"bilinear"是标准的线性插值算法,而在某些情况下,"bilinear_v2"可能会得到更优的效果。默认值:"bilinear"。

View File

@ -55,4 +55,4 @@ mindspore.ops.deformable_conv2d
- :math:`C_{in}` 能被8整除。
- `deformable_groups` 必须等于1。
- `offsets` 的数据是浮点数类型(即需要包含小数部分)。
- `kernel_size` 需要满足:math:`3 * kernel\_size[0] * kernel\_size[1] > 8`
- `kernel_size` 需要满足 :math:`3 * kernel\_size[0] * kernel\_size[1] > 8`

View File

@ -24,9 +24,9 @@ mindspore.ops.hinge_embedding_loss
其中 :math:`L = \{l_1,\dots,l_N\}^\top`
参数:
- **inputs** (Tensor) - 预测值,公式中表示为 :math:`x`shape为:math:`(*)``*` 代表着任意数量的维度。
- **inputs** (Tensor) - 预测值,公式中表示为 :math:`x`shape为 :math:`(*)``*` 代表着任意数量的维度。
- **targets** (Tensor) - 标签值,公式中表示为 :math:`y`,和 `logits` 具有相同shape包含1或-1。
- **margin** (float) - Hinge Embedding Loss公式定义的阈值 :math:`margin`。公式中表示为:math:`\Delta`。默认值1.0。
- **margin** (float) - Hinge Embedding Loss公式定义的阈值 :math:`margin`。公式中表示为 :math:`\Delta`。默认值1.0。
- **reduction** (str) - 指定应用于输出结果的计算方式,'none'、'mean'、'sum',默认值:'mean'。
返回:

View File

@ -30,7 +30,7 @@ mindspore.ops.multi_margin_loss
- 'sum':输出的总和。
返回:
- **outputs** - (Tensor),当 `reduction` 为"none"时shape为:math:`(N,)`。否则,为标量。类型与 `inputs` 相同。
- **outputs** - (Tensor),当 `reduction` 为"none"时shape为 :math:`(N,)`。否则,为标量。类型与 `inputs` 相同。
异常:
- **TypeError** - `p` 或者 `target` 数据类型不是int。

View File

@ -15,10 +15,10 @@
- 如果 `segment_ids` 中不存在segment_id `i` ,则对输出 `output[i]` 填充0。
- 在Ascend平台上如果segment_id的值小于0或大于输入Tensor的shape的长度将触发执行错误。
如果给定的segment_ids :math: `i` 的和为空,则math: `\text{output}[i] = 0` 。如果 `segment_ids` 元素为负数,将忽略该值。 `num_segments` 必须等于不同segment_id的数量。
如果给定的segment_ids :math: `i` 的和为空,则 :math:`\text{output}[i] = 0` 。如果 `segment_ids` 元素为负数,将忽略该值。 `num_segments` 必须等于不同segment_id的数量。
参数:
- **input_x** (Tensor) - shape :math:`(x_1, x_2, ..., x_R)`
- **input_x** (Tensor) - shape :math:`(x_1, x_2, ..., x_R)`
- **segment_ids** (Tensor) - 将shape设置为 :math:`(x_1, x_2, ..., x_N)` 其中0<N<=R。
- **num_segments** (Union[int, Tensor], 可选) - 分段数量 :math:`z` 数据类型为int或0维的Tensor。

View File

@ -293,7 +293,7 @@ class _LayerNorm(Cell):
- **x** (Tensor) - Tensor of shape :math:`(batch, seq\_length, hidden\_size)`.
Outputs:
Tensor of shape :math:`(batch, seq_length, hidden_size)`.
Tensor of shape :math:`(batch, seq\_length, hidden\_size)`.
"""
def __init__(self, normalized_shape, eps=1e-5, param_init_type=mstype.float32, is_self_defined=False):

View File

@ -3406,13 +3406,13 @@ def matrix_diag(x, k=0, num_rows=-1, num_cols=-1, padding_value=0, align="RIGHT_
num_rows (Union[int, Tensor], optional): A Tensor of type int32 with only one value. The number of rows of the
output Tensor. If `num_rows` is -1, indicating that the innermost matrix of the output Tensor is a square
matrix, and the real number of rows will be derivated by other inputs. That is
:math:`num_rows = x.shape[-1] - min(k[1], 0)`. Otherwise, the value must be equal or greater than
:math:`num\_rows = x.shape[-1] - min(k[1], 0)`. Otherwise, the value must be equal or greater than
:math:`x.shape[-1] - min(k[1], 0)`. Default: -1.
num_cols (Union[int, Tensor], optional): A Tensor of type int32 with only one value.
The number of columns of
the output Tensor. If `num_cols` is -1, indicating that the innermost matrix of the output
Tensor is a square matrix, and the real number of columns will be derivated by other inputs.
That is :math:`num_cols = x.shape[-1] + max(k[0], 0)`. Otherwise, the value must be equal or
That is :math:`num\_cols = x.shape[-1] + max(k[0], 0)`. Otherwise, the value must be equal or
greater than :math:`x.shape[-1] - min(k[1], 0)`. Default: -1.
padding_value (Union[int, float, Tensor], optional): A Tensor with only one value. Have the same dtype as x.
The number to fill the area outside the specified diagonal band. Default: 0.
@ -3830,7 +3830,7 @@ def unsorted_segment_min(x, segment_ids, num_segments):
\text { output }_i=\text{min}_{j \ldots} \text { data }[j \ldots]
where :math:`min` over tuples :math:`j...` such that :math:`segment_ids[j...] == i`.
where :math:`min` over tuples :math:`j...` such that :math:`segment\_ids[j...] == i`.
Note:
- If the segment_id i is absent in the segment_ids, then output[i] will be filled with

View File

@ -4808,7 +4808,7 @@ def triu_indices(row, col, offset=0, dtype=mstype.int64):
Outputs:
- **y** (Tensor) - indices of the elements in upper triangular part of matrix. The type is specified by `dtype`.
The shape of output is :math:`(2, triu_size)`, where :math:`triu_size` is the number of elements in the
The shape of output is :math:`(2, triu\_size)`, where :math:`triu\_size` is the number of elements in the
upper triangular matrix.
Raises:

View File

@ -1677,32 +1677,32 @@ class DynamicGRUV2Grad(Primitive):
reset_after (bool): An bool identifying whether to apply reset gate after matrix multiplication. Default: True.
Inputs:
- **x** (Tensor) - Current words. Tensor of shape :math:`(num_step, batch_size, input_size)`.
- **x** (Tensor) - Current words. Tensor of shape :math:`(num\_step, batch\_size, input\_size)`.
The data type must be float16 or float32.
- **weight_input** (Tensor) - Weight. Tensor of shape :math:`(input_size, 3 x hidden_size)`.
- **weight_input** (Tensor) - Weight. Tensor of shape :math:`(input\_size, 3 x hidden\_size)`.
The data type must be float16 or float32.
- **weight_hidden** (Tensor) - Bias. Tensor of shape :math:`(hidden_size, 3 x hidden_size)`.
- **weight_hidden** (Tensor) - Bias. Tensor of shape :math:`(hidden\_size, 3 x hidden\_size)`.
The data type must be float16 or float32.
- **y** (Tensor) - A Tensor of shape :math:
if num_proj > 0 `(num_step, batch_size, min(hidden_size, num_proj)`,
if num_proj == 0 `(num_step, batch_size, hidden_size)`.
The data type must be float16 or float32.
- **init_h** (Tensor) - Hidden state of initial time.
Tensor of shape :math:`(batch_size, hidden_size)`.
Tensor of shape :math:`(batch\_size, hidden\_size)`.
The data type must be float16 or float32.
- **h** (Tensor) - A Tensor of shape :math:`(num_step, batch_size, hidden_size)`.
- **h** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden_size)`.
The data type must be float16 or float32.
- **dy** (Tensor) - Gradient of `y`, has the same shape and data type as `y`.
- **dh** (Tensor) - Gradient of `h`, has the same shape and data type as `init_h`.
- **update** (Tensor) - A Tensor of shape :math:`(num_step, batch_size, hidden_size)`.
- **update** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
The data type must be float16 or float32.
- **reset** (Tensor) - A Tensor of shape :math:`(num_step, batch_size, hidden_size)`.
- **reset** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
The data type must be float16 or float32.
- **new** (Tensor) - A Tensor of shape :math:`(num_step, batch_size, hidden_size)`.
- **new** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
The data type must be float16 or float32.
- **hidden_new** (Tensor) - A Tensor of shape :math:`(num_step, batch_size, hidden_size)`.
- **hidden_new** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
The data type must be float16 or float32.
- **seq_length** (Tensor) - The length of each batch. Tensor of shape :math:`(batch_size)`.
- **seq_length** (Tensor) - The length of each batch. Tensor of shape :math:`(batch\_size)`.
Only `None` is currently supported.
- **mask** (Tensor) - A 4-D Tensor. The data type must be float16 or float32.
@ -1711,13 +1711,13 @@ class DynamicGRUV2Grad(Primitive):
Has the same type with input `x`.
- **dw_hidden** (Tensor) - A Tensor has the same shape as `weight_hidden`.
Has the same type with input `x`.
- **db_input** (Tensor) - A Tensor of shape :math:`(3 x hidden_size)`.
- **db_input** (Tensor) - A Tensor of shape :math:`(3 x hidden\_size)`.
Has the same type with input `x`.
- **db_hidden** (Tensor) - A Tensor of shape :math:`(3 x hidden_size)`.
- **db_hidden** (Tensor) - A Tensor of shape :math:`(3 x hidden\_size)`.
Has the same type with input `x`.
- **dx** (Tensor) - A Tensor of shape :math:`(num_step, batch_size, hidden_size)`.
- **dx** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`.
Has the same type with input `x`.
- **dh_prev** (Tensor) - A Tensor of shape :math:`(batch_size, hidden_size)`.
- **dh_prev** (Tensor) - A Tensor of shape :math:`(batch\_size, hidden\_size)`.
Has the same type with input `x`.
"""

View File

@ -70,7 +70,7 @@ class CusBatchMatMul(PrimitiveWithInfer):
class CusCholeskyTrsm(PrimitiveWithInfer):
"""
r"""
L * LT = A.
LT * (LT)^-1 = I.
return (LT)^-1.
@ -81,7 +81,7 @@ class CusCholeskyTrsm(PrimitiveWithInfer):
- **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(N, N)`.
Outputs:
Tensor, the shape of the output tensor is :math:`(N // Split_dim, Split_dim, Split_dim)`.
Tensor, the shape of the output tensor is :math:`(N // Split\_dim, Split\_dim, Split\_dim)`.
Examples:
>>> input_x = Tensor(np.ones(shape=[256, 256]), mindspore.float32)

View File

@ -449,9 +449,9 @@ class Im2Col(Primitive):
pads (Union[int, tuple[int], list[int]], optional): The pad of the window, that must be a tuple of
one or two or four `int` for height and width. Default: 0.
- If one int, :math:`pad_height = pad_width`.
- If two int, :math:`pad_height = pads[0]`, :math:`pad_width = pads[1]`.
- If four int, :math:`pads = [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`.
- If one int, :math:`pad\_height = pad\_width`.
- If two int, :math:`pad\_height = pads[0]`, :math:`pad\_width = pads[1]`.
- If four int, :math:`pads = [pad\_height\_top, pad\_height\_bottom, pad\_width\_left, pad\_width\_right]`.
Inputs:
- **x** (Tensor) - input tensor, only 4-D input tensors (batched image-like tensors) are supported.
@ -1348,9 +1348,9 @@ class MatrixSetDiagV3(Primitive):
equal to the longest diagonal value `max_diag_len` calculated
by :math:`min(x.shape[-2] + min(k[1], 0), x.shape[-1] + min(-k[0], 0))` .
Let x have r + 1 dimensions [I, J, ..., L, M, N].
The diagonal tensor has rank r with shape :math:`[I, J, ..., L, max_diag_len]`
The diagonal tensor has rank r with shape :math:`[I, J, ..., L, max\_diag\_len]`
when k is an integer or :math:`k[0] == k[1]` . Otherwise, it has rank r + 1
with shape :math:`[I, J, ..., L, num_diags, max_diag_len]` .
with shape :math:`[I, J, ..., L, num\_diags, max\_diag\_len]` .
Args:
align (str, optional): An optional string from: "RIGHT_LEFT", "LEFT_RIGHT", "LEFT_LEFT", "RIGHT_RIGHT".

View File

@ -364,8 +364,8 @@ class NonMaxSuppressionV3(Primitive):
selected by the algorithm.
Inputs:
- **boxes** (Tensor) - A 2-D Tensor of shape :math:`(num_boxes, 4)`.
- **scores** (Tensor) - A 1-D Tensor of shape :math:`(num_boxes)` representing a single score
- **boxes** (Tensor) - A 2-D Tensor of shape :math:`(num\_boxes, 4)`.
- **scores** (Tensor) - A 1-D Tensor of shape :math:`(num\_boxes)` representing a single score
corresponding to each box (each row of boxes), the num_boxes of `scores` must be equal to
the num_boxes of `boxes`.
- **max_output_size** (Union[Tensor, Number.Int]) - A scalar integer Tensor representing the maximum
@ -415,7 +415,7 @@ class NonMaxSuppressionV3(Primitive):
class NonMaxSuppressionWithOverlaps(Primitive):
"""
r"""
Greedily selects a subset of bounding boxes in descending order of score.
Note:
@ -425,9 +425,9 @@ class NonMaxSuppressionWithOverlaps(Primitive):
selected by the algorithm.
Inputs:
- **overlaps** (Tensor) - A 2-D Tensor of shape :math:`(num_boxes, num_boxes)`,
- **overlaps** (Tensor) - A 2-D Tensor of shape :math:`(num\_boxes, num\_boxes)`,
representing the n-by-n box overlap values. Types allowed:float32.
- **scores** (Tensor) - A 1-D Tensor of shape :math:`(num_boxes)` representing a single score
- **scores** (Tensor) - A 1-D Tensor of shape :math:`(num\_boxes)` representing a single score
corresponding to each box (each row of boxes), the num_boxes of `scores` must be equal to
the num_boxes of `overlaps`.
Types allowed:float32.
@ -486,7 +486,7 @@ class NonMaxSuppressionWithOverlaps(Primitive):
class HSVToRGB(Primitive):
"""
r"""
Convert one or more images from HSV to RGB.
Outputs a tensor of the same shape as the images tensor,
containing the HSV value of the pixels. The output is only
@ -494,11 +494,11 @@ class HSVToRGB(Primitive):
Inputs:
- **x** (Tensor) - The input image must be a 4-D tensor of shape
:math:`[batch, image_height, image_width, channel]`.
:math:`[batch, image\_height, image\_width, channel]`.
Number of channel must be 3. Types allowed: float16, float32, float64.
Outputs:
A 4-D tensor of shape :math:`[batch, image_height, image_width, channel]`
A 4-D tensor of shape :math:`[batch, image\_height, image\_width, channel]`
with same type of input.
Raises:
@ -850,7 +850,7 @@ class ResizeBicubic(Primitive):
class ResizeArea(Primitive):
"""
r"""
Resize images to a certain size using area interpolation.
The resizing process only changes the two dimensions of images, which represent the width and height of images.
@ -871,7 +871,7 @@ class ResizeArea(Primitive):
Types allowed: int32.
Outputs:
A 4-D tensor of shape :math:`(batch, new_height, new_width, channels)` with type float32.
A 4-D tensor of shape :math:`(batch, new\_height, new\_width, channels)` with type float32.
Raises:
TypeError: If dtype of `images` is not supported.
@ -1004,7 +1004,7 @@ class CropAndResizeGradImage(Primitive):
class ScaleAndTranslate(Primitive):
"""
r"""
Scale And Translate the input image tensor.
Note:
@ -1018,7 +1018,7 @@ class ScaleAndTranslate(Primitive):
antialias (bool, optional): Deciding whether to use the antialias. Default: True.
Inputs:
- **images** (Tensor) - A 4-D tensor of shape :math:`(batch, image_height, image_width, channel)`.
- **images** (Tensor) - A 4-D tensor of shape :math:`(batch, image\_height, image\_width, channel)`.
- **size** (Tensor) - The size of the output image after scale and translate operations. A 1-D tensor with two
positive elements whose dtype is int32 and shape must be (2,).
- **scale** (Tensor) - Indicates the zoom factor. A 1-D tensor with two positive elements whose dtype is float32

View File

@ -7268,7 +7268,7 @@ class NextAfter(Primitive):
class TrilIndices(Primitive):
r"""
Returns the indices of the lower triangular part of a `row` -by- `col` matrix in a Tensor.
The Tensor has a shape :math:`(2, tril_size)` where :math:`tril_size` is the number of
The Tensor has a shape :math:`(2, tril\_size)` where :math:`tril\_size` is the number of
elements in the lower triangular matrix. The first row contains row coordinates of
all indices and the second row contains column coordinates.
Indices are ordered based on rows and then columns.
@ -7287,7 +7287,7 @@ class TrilIndices(Primitive):
Outputs:
- **y** (Tensor) - indices of the elements in lower triangular part of matrix. The type specified by `dtype`.
The shape of output is :math:`(2, tril_size)`, where :math:`tril_size` is the number of elements in the
The shape of output is :math:`(2, tril\_size)`, where :math:`tril\_size` is the number of elements in the
lower triangular matrix.
Raises:
@ -7492,7 +7492,7 @@ class Orgqr(Primitive):
class TriuIndices(Primitive):
r"""
Returns the indices of the upper triangular part of a `row` -by- `col` matrix in a Tensor.
The Tensor has a shape :math:`(2, tril_size)` where :math:`tril_size` is the number of
The Tensor has a shape :math:`(2, tril\_size)` where :math:`tril\_size` is the number of
elements in the upper triangular matrix. The first row contains row coordinates of
all indices and the second row contains column coordinates.
Indices are ordered based on rows and then columns.
@ -7511,7 +7511,7 @@ class TriuIndices(Primitive):
Outputs:
- **y** (Tensor) - indices of the elements in lower triangular part of matrix. The type specified by `dtype`.
The shape of output is :math:`(2, tril_size)`, where :math:`tril_size` is the number of elements in the
The shape of output is :math:`(2, tril\_size)`, where :math:`tril\_size` is the number of elements in the
lower triangular matrix.
Raises:

View File

@ -2082,8 +2082,8 @@ class MaxUnpool2D(Primitive):
output_shape (tuple[int], optional): The target output size is an optional input. Default: ().
- If :math:`output_shape == ()` , then the shape of output computed by `kszie`, `strides` and `pads` .
- If :math:`output_shape != ()` , then `output_shape` must be :math:`(N, C, H, W)` or :math:`(N, H, W, C)`
- If :math:`output\_shape == ()` , then the shape of output computed by `kszie`, `strides` and `pads` .
- If :math:`output\_shape != ()` , then `output_shape` must be :math:`(N, C, H, W)` or :math:`(N, H, W, C)`
and `output_shape` must belong to :math:`[(N, C, H_{out} - strides[0], W_{out} - strides[1]),
(N, C, H_{out} + strides[0], W_{out} + strides[1])]`.
@ -7770,7 +7770,7 @@ class Conv3DBackpropInput(Primitive):
data_format (str): The optional value for data format. Currently only support 'NCDHW'.
Inputs:
- **weight** (Tensor) - Set size of kernel is :math:`(D_in, K_h, K_w)`, then the shape is
- **weight** (Tensor) - Set size of kernel is :math:`(D_{in}, K_h, K_w)`, then the shape is
:math:`(C_{out}, C_{in}, D_{in}, K_h, K_w)`. Currently weight data type only support float16 and float32.
- **dout** (Tensor) - the gradients with respect to the output of the convolution.
The shape conforms to the default.
@ -9385,7 +9385,7 @@ class PSROIPooling(Primitive):
Inputs:
- **features** (Tensor) - The input features, whose shape must be :math:`(N, C, H, W)`. With data type is
float16 or float32. This formula should hold: :math:`(C == output_dim * group_size * group_size)`.
float16 or float32. This formula should hold: :math:`(C == output\_dim * group\_size * group\_size)`.
- **rois** (Tensor) - The shape is `(batch, 5, rois_n)`. With data type of float16 or float32.
The size of first dimension `batch` is batch_size. The size of the second dimension must be `5`.
The size of third dimension `rois_n` is the number of rois. The value of `rois` like:
@ -9402,7 +9402,7 @@ class PSROIPooling(Primitive):
TypeError: If `group_size` or `output_dim` is not an int.
TypeError: If `features` or `rois` is not a Tensor.
TypeError: If dtype of `rois` is not float16 or float32.
ValueError: If shape of `features` does not satisfy :math:`(C == output_dim * group_size * group_size)`.
ValueError: If shape of `features` does not satisfy :math:`(C == output\_dim * group\_size * group\_size)`.
ValueError: If `spatial_scale` is negative.
Supported Platforms:

View File

@ -436,10 +436,10 @@ class Gamma(PrimitiveWithInfer):
class ParameterizedTruncatedNormal(Primitive):
"""
r"""
Returns a tensor of the specified shape filled with truncated normal values.
When `shape` is :math:`(batch_size, *)`, the shape of `mean`, `stdevs`,
`min` and `max` should be :math:`()` or :math:`(batch_size, )`.
When `shape` is :math:`(batch\_size, *)`, the shape of `mean`, `stdevs`,
`min` and `max` should be :math:`()` or :math:`(batch\_size, )`.
Note:
The value in tensor `min` must be strictly less than `max` at any position after broadcasting.
@ -468,8 +468,8 @@ class ParameterizedTruncatedNormal(Primitive):
TypeError: If data type of `shape`, `mean`, `stdevs`, `min` and `max` are not allowed.
TypeError: If `mean`, `stdevs`, `min`, `max` don't have the same type.
TypeError: If any of `shape`, `mean`, `stdevs`, `min` and `max` is not Tensor.
ValueError: When `shape` is :math:`(batch_size, *)`, if the shape of `mean`, `stdevs`, `min` or `max`
is not :math:`()` or :math:`(batch_size, )`.
ValueError: When `shape` is :math:`(batch\_size, *)`, if the shape of `mean`, `stdevs`, `min` or `max`
is not :math:`()` or :math:`(batch\_size, )`.
ValueError: If `shape` elements are not positive.
ValueError: If `stdevs` elements are not positive.
ValueError: If `shape` has less than 2 elements.

View File

@ -1395,7 +1395,7 @@ class SparseMatrixNNZ(Primitive):
class SparseFillEmptyRows(Primitive):
"""
r"""
Fill the blank lines in the input 2D SparseTensor with default values.
Inputs:
@ -1415,7 +1415,7 @@ class SparseFillEmptyRows(Primitive):
- **output_values** (Tensor) - A 1-D Tensor. It represents the value corresponding to the position
in the `output_indices`, the shape of which should be :math:`(m,)`, because of being filled, m>=n.
- **empty_row_indicator** (Tensor) - A 1-D Tensor. It indicates whether each row is empty.
Support bool. The shape is :math:`(dense_shape[0],)`.
Support bool. The shape is :math:`(dense\_shape[0],)`.
- **reverse_index_map** (Tensor) - A 1-D Tensor. It is the index that means the value here is original
rather than filled. Support bool. The shape is :math:`(n, 2)`.

View File

@ -49,7 +49,7 @@ class OptimizeResults(NamedTuple):
def minimize(func, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(),
tol=None, callback=None, options=None):
"""Minimization of scalar function of one or more variables.
r"""Minimization of scalar function of one or more variables.
This API for this function matches SciPy with some minor deviations:
@ -79,7 +79,7 @@ def minimize(func, x0, args=(), method=None, jac=None, hess=None, hessp=None, bo
jac (Callable, optional): method for computing the gradient vector. Only for `"BFGS"` and `"LBFGS"`.
if it is None, the gradient will be estimated with gradient of ``func``.
if it is a callable, it should be a function that returns the gradient vector:
:math:`jac(x, *args) -> array_like, shape (n,)`
:math:`jac(x, *args) -> array\_like, shape (n,)`
where x is an array with shape (n,) and args is a tuple with the fixed parameters.
tol (float, optional): tolerance for termination. For detailed control, use solver-specific
options. Default: None.

View File

@ -68,8 +68,8 @@ class Dice(Metric):
@rearrange_inputs
def update(self, *inputs):
"""
Updates the internal evaluation result :math:`y_pred` and :math:`y`.
r"""
Updates the internal evaluation result :math:`y\_pred` and :math:`y`.
Args:
inputs (tuple): Input `y_pred` and `y`. `y_pred` and `y` are Tensor, list or numpy.ndarray. `y_pred` is the

View File

@ -52,7 +52,7 @@ class MeanSurfaceDistance(Metric):
distance_metric (string): Three measurement methods are supported: "euclidean", "chessboard" or "taxicab".
Default: "euclidean".
symmetric (bool): Whether to calculate the Mean Surface Distance between y_pred and y.
If False, it only calculates :math:`AvgSurDis({y_pred} \rightarrow y)`,
If False, it only calculates :math:`AvgSurDis({y\_pred} \rightarrow y)`,
otherwise, the mean of distance from `y_pred` to `y` and from `y` to `y_pred`, i.e.
:math:`MeanSurDis(y_{pred} \leftrightarrow y)`, will be returned. Default: False.

View File

@ -53,7 +53,7 @@ class RootMeanSquareDistance(Metric):
symmetric (bool): Whether to calculate the symmetric average root mean square distance between
y_pred and y. If False, only calculates :math:`RmsSurDis(y_{pred}, y)` surface distance,
otherwise, the mean of distance from `y_pred` to `y` and from `y` to `y_pred`, i.e.
:math:`RmsSurDis({y_pred} \leftrightarrow y)` will be returned. Default: False.
:math:`RmsSurDis({y\_pred} \leftrightarrow y)` will be returned. Default: False.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``