modify resnet101 scripts for pylint

This commit is contained in:
meixiaowei 2020-04-26 17:57:12 +08:00
parent 99bbb3a3b2
commit 3cb692bea1
6 changed files with 49 additions and 112 deletions

View File

@ -54,9 +54,6 @@ Parameters for both training and evaluating can be set in config.py.
"save_checkpoint_steps": 500, # the step interval between two checkpoints. By default, the last checkpoint will be saved after the last step "save_checkpoint_steps": 500, # the step interval between two checkpoints. By default, the last checkpoint will be saved after the last step
"keep_checkpoint_max": 40, # only keep the last keep_checkpoint_max checkpoint "keep_checkpoint_max": 40, # only keep the last keep_checkpoint_max checkpoint
"save_checkpoint_path": "./", # path to save checkpoint relative to the executed path "save_checkpoint_path": "./", # path to save checkpoint relative to the executed path
"lr_init": 0.01, # initial learning rate
"lr_end": 0.00001, # final learning rate
"lr_max": 0.1, # maximum learning rate
"warmup_epochs": 0, # number of warmup epoch "warmup_epochs": 0, # number of warmup epoch
"lr_decay_mode": "cosine" # decay mode for generating learning rate "lr_decay_mode": "cosine" # decay mode for generating learning rate
"label_smooth": 1, # label_smooth "label_smooth": 1, # label_smooth

View File

@ -31,9 +31,6 @@ config = ed({
"save_checkpoint_steps": 500, "save_checkpoint_steps": 500,
"keep_checkpoint_max": 40, "keep_checkpoint_max": 40,
"save_checkpoint_path": "./", "save_checkpoint_path": "./",
"lr_init": 0.01,
"lr_end": 0.00001,
"lr_max": 0.1,
"warmup_epochs": 0, "warmup_epochs": 0,
"lr_decay_mode": "cosine", "lr_decay_mode": "cosine",
"label_smooth": 1, "label_smooth": 1,

View File

@ -50,63 +50,3 @@ def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch):
lr = base_lr * decayed lr = base_lr * decayed
lr_each_step.append(lr) lr_each_step.append(lr)
return np.array(lr_each_step).astype(np.float32) return np.array(lr_each_step).astype(np.float32)
def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
"""
generate learning rate array
Args:
global_step(int): total steps of the training
lr_init(float): init learning rate
lr_end(float): end learning rate
lr_max(float): max learning rate
warmup_epochs(int): number of warmup epochs
total_epochs(int): total epoch of training
steps_per_epoch(int): steps of one epoch
lr_decay_mode(string): learning rate decay mode, including steps, poly or default
Returns:
np.array, learning rate array
"""
lr_each_step = []
total_steps = steps_per_epoch * total_epochs
warmup_steps = steps_per_epoch * warmup_epochs
if lr_decay_mode == 'steps':
decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
for i in range(total_steps):
if i < decay_epoch_index[0]:
lr = lr_max
elif i < decay_epoch_index[1]:
lr = lr_max * 0.1
elif i < decay_epoch_index[2]:
lr = lr_max * 0.01
else:
lr = lr_max * 0.001
lr_each_step.append(lr)
elif lr_decay_mode == 'poly':
if warmup_steps != 0:
inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps)
else:
inc_each_step = 0
for i in range(total_steps):
if i < warmup_steps:
lr = float(lr_init) + inc_each_step * float(i)
else:
base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps)))
lr = float(lr_max) * base * base
if lr < 0.0:
lr = 0.0
lr_each_step.append(lr)
else:
for i in range(total_steps):
if i < warmup_steps:
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
else:
lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
lr_each_step.append(lr)
current_step = global_step
lr_each_step = np.array(lr_each_step).astype(np.float32)
learning_rate = lr_each_step[current_step:]
return learning_rate

View File

@ -19,7 +19,7 @@ import argparse
import random import random
import numpy as np import numpy as np
from dataset import create_dataset from dataset import create_dataset
from lr_generator import get_lr, warmup_cosine_annealing_lr from lr_generator import warmup_cosine_annealing_lr
from config import config from config import config
from mindspore import context from mindspore import context
from mindspore import Tensor from mindspore import Tensor
@ -32,9 +32,9 @@ from mindspore.train.loss_scale_manager import FixedLossScaleManager
import mindspore.dataset.engine as de import mindspore.dataset.engine as de
from mindspore.communication.management import init from mindspore.communication.management import init
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.common.initializer as weight_init
from crossentropy import CrossEntropy from crossentropy import CrossEntropy
from var_init import default_recurisive_init, KaimingNormal from var_init import default_recurisive_init, KaimingNormal
import mindspore.common.initializer as weight_init
random.seed(1) random.seed(1)
np.random.seed(1) np.random.seed(1)
@ -72,7 +72,7 @@ if __name__ == '__main__':
net = resnet101(class_num=config.class_num) net = resnet101(class_num=config.class_num)
# weight init # weight init
default_recurisive_init(net) default_recurisive_init(net)
for name, cell in net.cells_and_names(): for _, cell in net.cells_and_names():
if isinstance(cell, nn.Conv2d): if isinstance(cell, nn.Conv2d):
cell.weight.default_input = weight_init.initializer(KaimingNormal(a=math.sqrt(5), cell.weight.default_input = weight_init.initializer(KaimingNormal(a=math.sqrt(5),
mode='fan_out', nonlinearity='relu'), mode='fan_out', nonlinearity='relu'),
@ -83,17 +83,12 @@ if __name__ == '__main__':
loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
if args_opt.do_train: if args_opt.do_train:
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
repeat_num=epoch_size, batch_size=config.batch_size) repeat_num=epoch_size, batch_size=config.batch_size)
step_size = dataset.get_dataset_size() step_size = dataset.get_dataset_size()
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
# learning rate strategy # learning rate strategy with cosine
if config.lr_decay_mode == 'cosine': lr = Tensor(warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size))
lr = Tensor(warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size))
else:
lr = Tensor(get_lr(global_step=0, lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
warmup_epochs=config.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size,
lr_decay_mode='poly'))
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
config.weight_decay, config.loss_scale) config.weight_decay, config.loss_scale)
model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', keep_batchnorm_fp32=False, model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', keep_batchnorm_fp32=False,

View File

@ -37,12 +37,13 @@ def calculate_gain(nonlinearity, param=None):
param: optional parameter for the non-linear function param: optional parameter for the non-linear function
""" """
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
gain = 0
if nonlinearity in linear_fns or nonlinearity == 'sigmoid': if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
return 1 gain = 1
elif nonlinearity == 'tanh': elif nonlinearity == 'tanh':
return 5.0 / 3 gain = 5.0 / 3
elif nonlinearity == 'relu': elif nonlinearity == 'relu':
return math.sqrt(2.0) gain = math.sqrt(2.0)
elif nonlinearity == 'leaky_relu': elif nonlinearity == 'leaky_relu':
if param is None: if param is None:
negative_slope = 0.01 negative_slope = 0.01
@ -51,9 +52,10 @@ def calculate_gain(nonlinearity, param=None):
negative_slope = param negative_slope = param
else: else:
raise ValueError("negative_slope {} not a valid number".format(param)) raise ValueError("negative_slope {} not a valid number".format(param))
return math.sqrt(2.0 / (1 + negative_slope ** 2)) gain = math.sqrt(2.0 / (1 + negative_slope ** 2))
else: else:
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
return gain
def _calculate_correct_fan(array, mode): def _calculate_correct_fan(array, mode):
mode = mode.lower() mode = mode.lower()
@ -90,17 +92,14 @@ def kaiming_uniform_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'):
bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
return np.random.uniform(-bound, bound, array.shape) return np.random.uniform(-bound, bound, array.shape)
def kaiming_normal_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'): def kaiming_normal_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'):
r"""Fills the input `Tensor` with values according to the method r"""Fills the input `Tensor` with values according to the method
described in `Delving deep into rectifiers: Surpassing human-level described in `Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification` - He, K. et al. (2015), using a performance on ImageNet classification` - He, K. et al. (2015), using a
normal distribution. The resulting tensor will have values sampled from normal distribution. The resulting tensor will have values sampled from
:math:`\mathcal{N}(0, \text{std}^2)` where :math:`\mathcal{N}(0, \text{std}^2)` where
.. math:: .. math::
\text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}} \text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}}
Also known as He initialization. Also known as He initialization.
Args: Args:
@ -124,7 +123,6 @@ def _calculate_fan_in_and_fan_out(array):
dimensions = len(array.shape) dimensions = len(array.shape)
if dimensions < 2: if dimensions < 2:
raise ValueError("Fan in and fan out can not be computed for array with fewer than 2 dimensions") raise ValueError("Fan in and fan out can not be computed for array with fewer than 2 dimensions")
num_input_fmaps = array.shape[1] num_input_fmaps = array.shape[1]
num_output_fmaps = array.shape[0] num_output_fmaps = array.shape[0]
receptive_field_size = 1 receptive_field_size = 1
@ -132,19 +130,30 @@ def _calculate_fan_in_and_fan_out(array):
receptive_field_size = array[0][0].size receptive_field_size = array[0][0].size
fan_in = num_input_fmaps * receptive_field_size fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size
return fan_in, fan_out return fan_in, fan_out
def assignment(arr, num):
"""Assign the value of num to arr"""
if arr.shape == ():
arr = arr.reshape((1))
arr[:] = num
arr = arr.reshape(())
else:
if isinstance(num, np.ndarray):
arr[:] = num[:]
else:
arr[:] = num
return arr
class KaimingUniform(init.Initializer): class KaimingUniform(init.Initializer):
def __init__(self, a=0, mode='fan_in', nonlinearity='leaky_relu'): def __init__(self, a=0, mode='fan_in', nonlinearity='leaky_relu'):
super(KaimingUniform, self).__init__() super(KaimingUniform, self).__init__()
self.a = a self.a = a
self.mode = mode self.mode = mode
self.nonlinearity = nonlinearity self.nonlinearity = nonlinearity
def _initialize(self, arr): def _initialize(self, arr):
tmp = kaiming_uniform_(arr, self.a, self.mode, self.nonlinearity) tmp = kaiming_uniform_(arr, self.a, self.mode, self.nonlinearity)
init._assignment(arr, tmp) assignment(arr, tmp)
class KaimingNormal(init.Initializer): class KaimingNormal(init.Initializer):
def __init__(self, a=0, mode='fan_in', nonlinearity='leaky_relu'): def __init__(self, a=0, mode='fan_in', nonlinearity='leaky_relu'):
@ -152,33 +161,32 @@ class KaimingNormal(init.Initializer):
self.a = a self.a = a
self.mode = mode self.mode = mode
self.nonlinearity = nonlinearity self.nonlinearity = nonlinearity
def _initialize(self, arr): def _initialize(self, arr):
tmp = kaiming_normal_(arr, self.a, self.mode, self.nonlinearity) tmp = kaiming_normal_(arr, self.a, self.mode, self.nonlinearity)
init._assignment(arr, tmp) assignment(arr, tmp)
def default_recurisive_init(custom_cell): def default_recurisive_init(custom_cell):
"""weight init for conv2d and dense""" """weight init for conv2d and dense"""
for name, cell in custom_cell.cells_and_names(): for _, cell in custom_cell.cells_and_names():
if isinstance(cell, nn.Conv2d): if isinstance(cell, nn.Conv2d):
cell.weight.default_input = init.initializer(KaimingUniform(a=math.sqrt(5)), cell.weight.default_input = init.initializer(KaimingUniform(a=math.sqrt(5)),
cell.weight.default_input.shape(), cell.weight.default_input.shape(),
cell.weight.default_input.dtype()) cell.weight.default_input.dtype())
if cell.bias is not None: if cell.bias is not None:
fan_in, _ = _calculate_fan_in_and_fan_out(cell.weight.default_input.asnumpy()) fan_in, _ = _calculate_fan_in_and_fan_out(cell.weight.default_input.asnumpy())
bound = 1 / math.sqrt(fan_in) bound = 1 / math.sqrt(fan_in)
cell.bias.default_input = Tensor(np.random.uniform(-bound, bound, cell.bias.default_input = Tensor(np.random.uniform(-bound, bound,
cell.bias.default_input.shape()), cell.bias.default_input.shape()),
cell.bias.default_input.dtype()) cell.bias.default_input.dtype())
elif isinstance(cell, nn.Dense): elif isinstance(cell, nn.Dense):
cell.weight.default_input = init.initializer(KaimingUniform(a=math.sqrt(5)), cell.weight.default_input = init.initializer(KaimingUniform(a=math.sqrt(5)),
cell.weight.default_input.shape(), cell.weight.default_input.shape(),
cell.weight.default_input.dtype()) cell.weight.default_input.dtype())
if cell.bias is not None: if cell.bias is not None:
fan_in, _ = _calculate_fan_in_and_fan_out(cell.weight.default_input.asnumpy()) fan_in, _ = _calculate_fan_in_and_fan_out(cell.weight.default_input.asnumpy())
bound = 1 / math.sqrt(fan_in) bound = 1 / math.sqrt(fan_in)
cell.bias.default_input = Tensor(np.random.uniform(-bound, bound, cell.bias.default_input = Tensor(np.random.uniform(-bound, bound,
cell.bias.default_input.shape()), cell.bias.default_input.shape()),
cell.bias.default_input.dtype()) cell.bias.default_input.dtype())
elif isinstance(cell, (nn.BatchNorm2d, nn.BatchNorm1d)): elif isinstance(cell, (nn.BatchNorm2d, nn.BatchNorm1d)):
pass pass