forked from mindspore-Ecosystem/mindspore
fix gatherv2
This commit is contained in:
parent
9f079d4406
commit
390a86effb
|
@ -48,7 +48,7 @@ Status GatherV2PInfo::GetAttrs() {
|
|||
}
|
||||
|
||||
Status GatherV2PInfo::CheckStrategy(const StrategyPtr &strategy) {
|
||||
if (CheckStrategyValue(strategy, {inputs_shape_.at(0)}, is_auto_parallel_) != SUCCESS) {
|
||||
if (CheckStrategyValue(strategy, inputs_shape_, is_auto_parallel_) != SUCCESS) {
|
||||
if (is_auto_parallel_) {
|
||||
MS_LOG(DEBUG) << name_ << ": Invalid strategy.";
|
||||
} else {
|
||||
|
@ -84,12 +84,19 @@ Status GatherV2PInfo::CheckStrategy(const StrategyPtr &strategy) {
|
|||
return FAILED;
|
||||
}
|
||||
|
||||
// Don't support repeated calc
|
||||
auto params_strategy = strategy->GetInputDim().at(0);
|
||||
// param_strategy(axis) != 1, index can't be splited
|
||||
auto index_strategy = strategy->GetInputDim().at(1);
|
||||
auto product_i = std::accumulate(index_strategy.begin(), index_strategy.end(), 1, std::multiplies<int>());
|
||||
if ((param_strategy.at(IntToSize(axis_)) != 1) && (product_i != 1)) {
|
||||
MS_LOG(ERROR) << name_ << ": param is splited at dim (axis)" << axis_ << " ,index can't be splited.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
// param_strategy(axis) != 1, Don't support repeated calc
|
||||
CheckGlobalDeviceManager();
|
||||
size_t dev_num = g_device_manager->GetDeviceListByStageId(0).size();
|
||||
auto product = std::accumulate(params_strategy.begin(), params_strategy.end(), 1, std::multiplies<int>());
|
||||
if (dev_num != IntToSize(product)) {
|
||||
auto product_p = std::accumulate(param_strategy.begin(), param_strategy.end(), 1, std::multiplies<int>());
|
||||
if (IntToSize(product_p) != dev_num && param_strategy.at(IntToSize(axis_)) != 1) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid strategy. Don't support repeated calc.";
|
||||
return FAILED;
|
||||
}
|
||||
|
@ -97,26 +104,66 @@ Status GatherV2PInfo::CheckStrategy(const StrategyPtr &strategy) {
|
|||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status GatherV2PInfo::InferMirrorOps() {
|
||||
mirror_ops_.clear();
|
||||
Shape input_a_tensor_map = inputs_tensor_map_.at(0);
|
||||
std::vector<Group> input_a_group;
|
||||
if (CreateGroupByTensorMap(input_a_tensor_map, &input_a_group) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << " : Create group for input a failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
OperatorVector op_for_input_a, op_for_input_b, op_for_axis;
|
||||
if (input_a_group.empty()) {
|
||||
MS_LOG(INFO) << name_ << " : The mirror group is empty.";
|
||||
return SUCCESS;
|
||||
} else {
|
||||
op_for_input_a = CreateMirrorOps(input_a_group[0].name(), input_a_group[0].GetDevNum());
|
||||
MS_LOG(INFO) << name_ << " : Create the mirror ops for input a success, group is " << input_a_group[0].name();
|
||||
}
|
||||
|
||||
mirror_ops_.push_back(op_for_input_a);
|
||||
mirror_ops_.push_back(op_for_input_b);
|
||||
mirror_ops_.push_back(op_for_axis);
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status GatherV2PInfo::InferDevMatrixShape() {
|
||||
dev_matrix_shape_.clear();
|
||||
out_dev_matrix_shape_.clear();
|
||||
// infer input dev_matrix_shape
|
||||
auto params_strategy = strategy_->GetInputDim().at(0);
|
||||
dev_matrix_shape_ = params_strategy;
|
||||
auto param_strategy = strategy_->GetInputDim().at(0);
|
||||
auto index_strategy = strategy_->GetInputDim().at(1);
|
||||
dev_matrix_shape_ = param_strategy;
|
||||
|
||||
// param_strategy(axis)!=1,
|
||||
if (param_strategy.at(IntToSize(axis_)) != 1) {
|
||||
std::reverse(dev_matrix_shape_.begin(), dev_matrix_shape_.end());
|
||||
} else {
|
||||
dev_matrix_shape_.insert(dev_matrix_shape_.end(), index_strategy.begin(), index_strategy.end());
|
||||
}
|
||||
|
||||
// infer out dev_matrix_shape
|
||||
// axis!=0, split axis
|
||||
if (axis_ != 0 && params_strategy.at(IntToSize(axis_)) != 1) {
|
||||
out_dev_matrix_shape_.push_back(params_strategy.at(0) * params_strategy.at(IntToSize(axis_)));
|
||||
for (size_t i = 1; i < params_strategy.size(); ++i) {
|
||||
if (axis_ != 0 && param_strategy.at(IntToSize(axis_)) != 1) {
|
||||
out_dev_matrix_shape_.push_back(param_strategy.at(0) * param_strategy.at(IntToSize(axis_)));
|
||||
for (size_t i = 1; i < param_strategy.size(); ++i) {
|
||||
if (i == IntToSize(axis_)) {
|
||||
out_dev_matrix_shape_.push_back(1);
|
||||
} else {
|
||||
out_dev_matrix_shape_.push_back(params_strategy.at(i));
|
||||
out_dev_matrix_shape_.push_back(param_strategy.at(i));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
out_dev_matrix_shape_ = params_strategy;
|
||||
out_dev_matrix_shape_ = dev_matrix_shape_;
|
||||
}
|
||||
auto product_out =
|
||||
std::accumulate(out_dev_matrix_shape_.begin(), out_dev_matrix_shape_.end(), 1, std::multiplies<int>());
|
||||
CheckGlobalDeviceManager();
|
||||
size_t dev_num = g_device_manager->GetDeviceListByStageId(0).size();
|
||||
if (product_out == 1) {
|
||||
out_dev_matrix_shape_.insert(out_dev_matrix_shape_.begin(), dev_num);
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
|
@ -124,28 +171,56 @@ Status GatherV2PInfo::InferDevMatrixShape() {
|
|||
|
||||
Status GatherV2PInfo::InferTensorMap() {
|
||||
// infer input tensor map
|
||||
// param_strategy(axis) != 1
|
||||
size_t param_size = inputs_shape_.at(0).size();
|
||||
size_t index_size = inputs_shape_.at(1).size();
|
||||
std::vector<int32_t> tensor_map_index(index_size, -1);
|
||||
size_t total_size = dev_matrix_shape_.size();
|
||||
std::vector<int32_t> tensor_map_index;
|
||||
std::vector<int32_t> tensor_map_params;
|
||||
for (size_t i = 0; i < param_size; ++i) {
|
||||
tensor_map_params.push_back(SizeToInt(param_size - i - 1));
|
||||
auto param_strategy = strategy_->GetInputDim().at(0);
|
||||
if (param_strategy.at(IntToSize(axis_)) != 1) {
|
||||
tensor_map_index.insert(tensor_map_index.begin(), index_size, -1);
|
||||
for (size_t i = 0; i < param_size; ++i) {
|
||||
tensor_map_params.push_back(SizeToInt(i));
|
||||
}
|
||||
} else {
|
||||
// param_strategy(axis) == 1
|
||||
for (size_t i = 0; i < param_size; ++i) {
|
||||
tensor_map_params.push_back(SizeToInt(total_size - i - 1));
|
||||
}
|
||||
for (size_t i = 0; i < index_size; ++i) {
|
||||
tensor_map_index.push_back(SizeToInt(index_size - i - 1));
|
||||
}
|
||||
}
|
||||
|
||||
// infer output tensor map
|
||||
std::vector<int32_t> tensor_map_out;
|
||||
if (axis_ == 0) {
|
||||
tensor_map_out.push_back(SizeToInt(param_size - 1));
|
||||
tensor_map_out.insert(tensor_map_out.end(), index_size - 1, -1);
|
||||
for (size_t i = 1; i < param_size; ++i) {
|
||||
tensor_map_out.push_back(SizeToInt(param_size - i - 1));
|
||||
}
|
||||
} else {
|
||||
if (param_strategy.at(IntToSize(axis_)) == 1) {
|
||||
// param_strategy(axis) == 1
|
||||
for (size_t i = 0; i < param_size; ++i) {
|
||||
if (i == IntToSize(axis_)) {
|
||||
tensor_map_out.insert(tensor_map_out.end(), index_size, -1);
|
||||
for (size_t j = 0; j < index_size; ++j) {
|
||||
tensor_map_out.push_back(SizeToInt(index_size - j - 1));
|
||||
}
|
||||
} else {
|
||||
tensor_map_out.push_back(SizeToInt(param_size - i - 1));
|
||||
tensor_map_out.push_back(SizeToInt(total_size - i - 1));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// param_strategy(axis) != 1
|
||||
if (axis_ == 0) {
|
||||
tensor_map_out.insert(tensor_map_out.end(), 0);
|
||||
tensor_map_out.insert(tensor_map_out.end(), index_size - 1, -1);
|
||||
for (size_t i = 1; i < param_size; ++i) {
|
||||
tensor_map_out.push_back(i);
|
||||
}
|
||||
} else {
|
||||
for (size_t i = 0; i < param_size; ++i) {
|
||||
if (i == IntToSize(axis_)) {
|
||||
tensor_map_out.insert(tensor_map_out.end(), index_size, -1);
|
||||
} else {
|
||||
tensor_map_out.push_back(SizeToInt(param_size - i - 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -209,7 +284,12 @@ Status GatherV2PInfo::InferBias() {
|
|||
|
||||
Status GatherV2PInfo::InferGroup() {
|
||||
std::vector<Group> group_list;
|
||||
if (CreateGroupByDim(IntToSize(axis_), &group_list) != SUCCESS) {
|
||||
auto param_strategy = strategy_->GetInputDim().at(0);
|
||||
size_t dim = IntToSize(axis_);
|
||||
if (param_strategy.at(IntToSize(axis_)) != 1 && inputs_shape_.at(0).size() == 2) {
|
||||
dim = (axis_ + 1) % 2;
|
||||
}
|
||||
if (CreateGroupByDim(dim, &group_list) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Create group failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
@ -231,7 +311,7 @@ Status GatherV2PInfo::ComputeReplaceGraph(const CNodePtr &cnode) {
|
|||
auto sub = gen_g.PushBack({gen_g.NewOpInst(SUB), gen_g.virtual_input_node(), CreateInt32Tensor(bias_)});
|
||||
auto relu = gen_g.PushBack({gen_g.NewOpInst(RELU), sub});
|
||||
auto minimum = gen_g.PushBack({gen_g.NewOpInst(MINIMUM), relu, CreateInt32Tensor(slice_size_ - 1)});
|
||||
auto equal = gen_g.PushBack({gen_g.NewOpInst(EQUAL), gen_g.virtual_input_node(), minimum});
|
||||
auto equal = gen_g.PushBack({gen_g.NewOpInst(EQUAL), sub, minimum});
|
||||
auto gather_v2 =
|
||||
gen_g.PushBack({gen_g.NewOpInst(GATHERV2), gen_g.virtual_input_node(), minimum, CreatInt32Imm(axis_)});
|
||||
auto dtype = gen_g.PushBack({gen_g.NewOpInst(DTYPE), gather_v2});
|
||||
|
@ -250,8 +330,7 @@ Status GatherV2PInfo::ComputeReplaceGraph(const CNodePtr &cnode) {
|
|||
Attr attr_group = std::make_pair(GROUP, MakeValue(group_.name()));
|
||||
OperatorAttrs attrs = {attr_op, attr_group};
|
||||
auto reduce_scatter = gen_g.PushBack({gen_g.NewOpInst(REDUCE_SCATTER, attrs), mul});
|
||||
std::vector<std::pair<AnfNodePtr, int>> input_nodes = {std::make_pair(sub, 2), std::make_pair(gather_v2, 1),
|
||||
std::make_pair(equal, 2)};
|
||||
std::vector<std::pair<AnfNodePtr, int>> input_nodes = {std::make_pair(sub, 2), std::make_pair(gather_v2, 1)};
|
||||
replace_graph_ = std::make_shared<std::pair<std::vector<std::pair<AnfNodePtr, int>>, AnfNodePtr>>(
|
||||
std::make_pair(input_nodes, reduce_scatter));
|
||||
|
||||
|
@ -309,11 +388,11 @@ Status GatherV2PInfo::SetCostUnderStrategy(const StrategyPtr &strategy) {
|
|||
Status GatherV2PInfo::GenerateStrategies(int32_t stage_id) {
|
||||
is_auto_parallel_ = true;
|
||||
Shape input0_split(inputs_shape_[0].size(), 1);
|
||||
Shapes splittable_inputs = {input0_split};
|
||||
Shape input1_split(inputs_shape_[1].size(), 1);
|
||||
Shapes splittable_inputs = {input0_split, input1_split};
|
||||
|
||||
std::vector<StrategyPtr> sp_vector;
|
||||
if (GenerateStrategiesForIndependentInputs(stage_id, {inputs_shape_.at(0)}, splittable_inputs, &sp_vector) !=
|
||||
SUCCESS) {
|
||||
if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_inputs, &sp_vector) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << " : Generate strategies for independent inputs() failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
@ -331,12 +410,13 @@ Status GatherV2PInfo::GenerateStrategies(int32_t stage_id) {
|
|||
std::shared_ptr<std::vector<std::vector<int32_t>>> GatherV2PInfo::GenerateBatchStrategies() {
|
||||
CheckGlobalDeviceManager();
|
||||
size_t dev_num = g_device_manager->GetDeviceListByStageId(0).size();
|
||||
Dimensions strategy;
|
||||
strategy.push_back(SizeToInt(dev_num));
|
||||
for (size_t i = 1; i < inputs_shape_[0].size(); i++) {
|
||||
strategy.push_back(1);
|
||||
Dimensions param_strategy(inputs_shape_[0].size(), 1);
|
||||
Dimensions index_strategy;
|
||||
index_strategy.push_back(SizeToInt(dev_num));
|
||||
for (size_t i = 1; i < inputs_shape_[1].size(); i++) {
|
||||
index_strategy.push_back(1);
|
||||
}
|
||||
std::vector<Dimensions> strategy_v = {strategy};
|
||||
std::vector<Dimensions> strategy_v = {param_strategy, index_strategy};
|
||||
return std::make_shared<std::vector<std::vector<int32_t>>>(strategy_v);
|
||||
}
|
||||
} // namespace parallel
|
||||
|
|
|
@ -48,7 +48,7 @@ class GatherV2PInfo : public OperatorInfo {
|
|||
|
||||
protected:
|
||||
Status CheckStrategy(const StrategyPtr &strategy) override;
|
||||
Status InferMirrorOps() override { return SUCCESS; }
|
||||
Status InferMirrorOps() override;
|
||||
Status InferForwardCommunication() override { return SUCCESS; }
|
||||
Status InferTensorInfo() override;
|
||||
Status InferDevMatrixShape() override;
|
||||
|
|
|
@ -61,7 +61,7 @@ class Net(nn.Cell):
|
|||
|
||||
def test_gatherv2_semi_auto0():
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((1, 8),)
|
||||
strategy1 = ((1, 8), (1, 1))
|
||||
strategy2 = ((4, 2, 1), (4, 2, 1))
|
||||
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
|
||||
net.set_auto_parallel()
|
||||
|
@ -73,7 +73,7 @@ def test_gatherv2_semi_auto0():
|
|||
|
||||
def test_gatherv2_semi_auto1():
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((8, 1),)
|
||||
strategy1 = ((8, 1), (1, 1))
|
||||
strategy2 = ((4, 2, 1), (4, 2, 1))
|
||||
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
|
||||
net.set_auto_parallel()
|
||||
|
@ -85,7 +85,7 @@ def test_gatherv2_semi_auto1():
|
|||
|
||||
def test_gatherv2_semi_auto2():
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 4),)
|
||||
strategy1 = ((2, 4), (1, 1))
|
||||
strategy2 = ((4, 2, 1), (4, 2, 1))
|
||||
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
|
||||
net.set_auto_parallel()
|
||||
|
@ -97,7 +97,7 @@ def test_gatherv2_semi_auto2():
|
|||
|
||||
def test_gatherv2_semi_auto3():
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((1, 8),)
|
||||
strategy1 = ((1, 8), (1, 1))
|
||||
strategy2 = ((4, 2, 1), (4, 2, 1))
|
||||
net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
|
||||
net.set_auto_parallel()
|
||||
|
@ -109,7 +109,7 @@ def test_gatherv2_semi_auto3():
|
|||
|
||||
def test_gatherv2_semi_auto4():
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((8, 1),)
|
||||
strategy1 = ((8, 1), (1, 1))
|
||||
strategy2 = ((4, 2, 1), (4, 2, 1))
|
||||
net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
|
||||
net.set_auto_parallel()
|
||||
|
@ -121,7 +121,7 @@ def test_gatherv2_semi_auto4():
|
|||
|
||||
def test_gatherv2_semi_auto5():
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 4),)
|
||||
strategy1 = ((2, 4), (1, 1))
|
||||
strategy2 = ((4, 2, 1), (4, 2, 1))
|
||||
net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
|
||||
net.set_auto_parallel()
|
||||
|
@ -155,7 +155,7 @@ def test_gatherv2_semi_auto7():
|
|||
|
||||
def test_gatherv2_semi_auto8():
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((8,),)
|
||||
strategy1 = ((8,), (1, 1))
|
||||
strategy2 = ((4, 2), (4, 2))
|
||||
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
|
||||
net.set_auto_parallel()
|
||||
|
|
|
@ -221,14 +221,14 @@ def test_axis1_auto_batch_parallel():
|
|||
|
||||
|
||||
def test_axis1_batch_parallel():
|
||||
gather_v2_strategy = ((device_number, 1),)
|
||||
gather_v2_strategy = ((device_number, 1), (1, ))
|
||||
criterion = GatherV2Axis1(1, strategy=gather_v2_strategy, index_size=512)
|
||||
rank = 2
|
||||
net_trains(gather_v2_strategy, criterion, rank)
|
||||
|
||||
|
||||
def test_axis1_strategy1():
|
||||
gather_v2_strategy = ((16, 2),)
|
||||
gather_v2_strategy = ((16, 2), (1, ))
|
||||
rank = 17
|
||||
criterion = GatherV2Axis1(1, strategy=gather_v2_strategy, index_size=512)
|
||||
net_trains(gather_v2_strategy, criterion, rank)
|
||||
|
|
Loading…
Reference in New Issue