forked from mindspore-Ecosystem/mindspore
vm for erfc
This commit is contained in:
parent
93e7c97a96
commit
2d3cd8276e
|
@ -361,6 +361,23 @@ def get_bprop_erf(self):
|
||||||
return bprop
|
return bprop
|
||||||
|
|
||||||
|
|
||||||
|
@bprop_getters.register(P.Erfc)
|
||||||
|
def get_bprop_erfc(self):
|
||||||
|
"""Grad definition for `Erfc` operation."""
|
||||||
|
exp = P.Exp()
|
||||||
|
square = P.Square()
|
||||||
|
sqrt = P.Sqrt()
|
||||||
|
cast = P.Cast()
|
||||||
|
dtype = P.DType()
|
||||||
|
|
||||||
|
def bprop(x, out, dout):
|
||||||
|
half_root_pi = cast(2 / sqrt(F.scalar_to_tensor(np.pi)), dtype(x))
|
||||||
|
x_square = square(x)
|
||||||
|
dx = dout * (-half_root_pi * exp(-x_square))
|
||||||
|
return (dx,)
|
||||||
|
return bprop
|
||||||
|
|
||||||
|
|
||||||
@bprop_getters.register(P.Pow)
|
@bprop_getters.register(P.Pow)
|
||||||
def get_bprop_pow(self):
|
def get_bprop_pow(self):
|
||||||
"""Grad definition for `Pow` operation."""
|
"""Grad definition for `Pow` operation."""
|
||||||
|
|
|
@ -152,6 +152,7 @@ from .fused_mul_add_n import _fused_mul_add_n_tbe
|
||||||
from .fused_mul_apply_momentum import _fused_mul_apply_momentum_tbe
|
from .fused_mul_apply_momentum import _fused_mul_apply_momentum_tbe
|
||||||
from .fill import _fill_op_tbe
|
from .fill import _fill_op_tbe
|
||||||
from .erf import _erf_op_tbe
|
from .erf import _erf_op_tbe
|
||||||
|
from .erfc import _erfc_op_tbe
|
||||||
from .depthwise_conv2d import _depthwise_conv2d_tbe
|
from .depthwise_conv2d import _depthwise_conv2d_tbe
|
||||||
from .depthwise_conv2d_backprop_filter import _depthwise_conv2d_backprop_filter_tbe
|
from .depthwise_conv2d_backprop_filter import _depthwise_conv2d_backprop_filter_tbe
|
||||||
from .depthwise_conv2d_backprop_input import _depthwise_conv2d_backprop_input_tbe
|
from .depthwise_conv2d_backprop_input import _depthwise_conv2d_backprop_input_tbe
|
||||||
|
|
|
@ -0,0 +1,39 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
"""Erfc op"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||||
|
|
||||||
|
erfc_op_info = TBERegOp("Erfc") \
|
||||||
|
.fusion_type("ELEMWISE") \
|
||||||
|
.async_flag(False) \
|
||||||
|
.binfile_name("erfc.so") \
|
||||||
|
.compute_cost(10) \
|
||||||
|
.kernel_name("erfc") \
|
||||||
|
.partial_flag(True) \
|
||||||
|
.op_pattern("formatAgnostic") \
|
||||||
|
.input(0, "x", False, "required", "all") \
|
||||||
|
.output(0, "y", False, "required", "all") \
|
||||||
|
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
|
||||||
|
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||||
|
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
|
||||||
|
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||||
|
.get_op_info()
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register(erfc_op_info)
|
||||||
|
def _erfc_op_tbe():
|
||||||
|
"""Erfc TBE register"""
|
||||||
|
return
|
|
@ -39,7 +39,7 @@ from .control_ops import ControlDepend, GeSwitch, Merge
|
||||||
from .inner_ops import ScalarCast
|
from .inner_ops import ScalarCast
|
||||||
from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul,
|
from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul,
|
||||||
ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd,
|
ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd,
|
||||||
Cos, Div, Equal, EqualCount, Exp, Erf, Floor, FloorDiv, FloorMod, Acosh,
|
Cos, Div, Equal, EqualCount, Exp, Erf, Erfc, Floor, FloorDiv, FloorMod, Acosh,
|
||||||
Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd,
|
Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd,
|
||||||
LogicalNot, LogicalOr, MatMul, Maximum,
|
LogicalNot, LogicalOr, MatMul, Maximum,
|
||||||
Minimum, Mul, Neg, NMSWithMask, NotEqual,
|
Minimum, Mul, Neg, NMSWithMask, NotEqual,
|
||||||
|
|
|
@ -1067,6 +1067,36 @@ class Erf(PrimitiveWithInfer):
|
||||||
return x_type
|
return x_type
|
||||||
|
|
||||||
|
|
||||||
|
class Erfc(PrimitiveWithInfer):
|
||||||
|
r"""
|
||||||
|
Computes the complementary error function of `input_x` element-wise.
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **input_x** (Tensor) - The input tensor.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
Tensor, has the same shape and dtype as the `input_x`.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32)
|
||||||
|
>>> erfc = P.Erfc()
|
||||||
|
>>> erfc(input_x)
|
||||||
|
[1.8427168, 0., 0.1572832, 0.00469124, 0.00002235]
|
||||||
|
"""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self):
|
||||||
|
"""init Erfc"""
|
||||||
|
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
||||||
|
|
||||||
|
def infer_shape(self, x_shape):
|
||||||
|
return x_shape
|
||||||
|
|
||||||
|
def infer_dtype(self, x_type):
|
||||||
|
validator.check_tensor_type_same({"x": x_type}, [mstype.float16, mstype.float32], self.name)
|
||||||
|
return x_type
|
||||||
|
|
||||||
|
|
||||||
class Minimum(_MathBinaryOp):
|
class Minimum(_MathBinaryOp):
|
||||||
"""
|
"""
|
||||||
Computes the element-wise minimum of input tensors.
|
Computes the element-wise minimum of input tensors.
|
||||||
|
|
|
@ -372,6 +372,15 @@ class Log1pNet(nn.Cell):
|
||||||
return self.log1p(x)
|
return self.log1p(x)
|
||||||
|
|
||||||
|
|
||||||
|
class ErfcNet(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(ErfcNet, self).__init__()
|
||||||
|
self.erfc = P.Erfc()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
return self.erfc(x)
|
||||||
|
|
||||||
|
|
||||||
test_case_math_ops = [
|
test_case_math_ops = [
|
||||||
('MatMulGrad', {
|
('MatMulGrad', {
|
||||||
'block': GradWrap(NetWithLoss(MatMulNet())),
|
'block': GradWrap(NetWithLoss(MatMulNet())),
|
||||||
|
@ -422,6 +431,11 @@ test_case_math_ops = [
|
||||||
'desc_inputs': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
|
'desc_inputs': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
|
||||||
'desc_bprop': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
|
'desc_bprop': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
|
||||||
'skip': ['backward']}),
|
'skip': ['backward']}),
|
||||||
|
('Erfc', {
|
||||||
|
'block': ErfcNet(),
|
||||||
|
'desc_inputs': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
|
||||||
|
'desc_bprop': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
|
||||||
|
}),
|
||||||
]
|
]
|
||||||
|
|
||||||
test_case_lists = [test_case_math_ops]
|
test_case_lists = [test_case_math_ops]
|
||||||
|
|
Loading…
Reference in New Issue