forked from mindspore-Ecosystem/mindspore
!1487 add cpu kernel "AddN"
Merge pull request !1487 from sunsuodong/addn
This commit is contained in:
commit
2753aa5a9c
|
@ -85,7 +85,7 @@ bool IsInputFormatDtypeMatched(const KernelAttr &kernel_attr, const std::vector<
|
|||
const std::vector<TypeId> &input_types,
|
||||
const std::vector<size_t> &input_not_cnode_indexes) {
|
||||
if (kernel_attr.GetInputSize() != input_types.size()) {
|
||||
MS_LOG(ERROR) << "required input num:" << kernel_attr.GetInputSize() << ", actual input num:" << input_types.size();
|
||||
MS_LOG(DEBUG) << "required input num:" << kernel_attr.GetInputSize() << ", actual input num:" << input_types.size();
|
||||
return false;
|
||||
}
|
||||
auto input_num = input_types.size();
|
||||
|
|
|
@ -0,0 +1,66 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/cpu/addn_cpu_kernel.h"
|
||||
#include "device/cpu/cpu_device_address.h"
|
||||
#include "ir/primitive.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void AddNCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
input_num_ = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
CPUKernelUtils::ExpandDimsTo4(&output_shape_);
|
||||
}
|
||||
|
||||
bool AddNCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
auto output_addr = reinterpret_cast<float *>(outputs[0]->addr);
|
||||
|
||||
for (size_t i = 0; i < output_shape_[0]; ++i) {
|
||||
for (size_t j = 0; j < output_shape_[1]; ++j) {
|
||||
for (size_t k = 0; k < output_shape_[2]; ++k) {
|
||||
for (size_t m = 0; m < output_shape_[3]; ++m) {
|
||||
auto offset = CPUKernelUtils::CalcOffset(output_shape_, i, j, k, m);
|
||||
float sum = 0;
|
||||
for (size_t index = 0; index < input_num_; ++index) {
|
||||
auto input_addr = reinterpret_cast<float *>(inputs[index]->addr);
|
||||
sum += input_addr[offset];
|
||||
}
|
||||
output_addr[offset] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void AddNCPUKernel::CheckParam(const CNodePtr &kernel_node) {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
if (input_shape.size() > 4) {
|
||||
MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size() << ", but AddNCPUKernel olny support 4d or lower.";
|
||||
}
|
||||
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but AddNCPUKernel needs 1 output.";
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,56 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_ADDN_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_CPU_ADDN_CPU_KERNEL_H_
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "kernel/cpu/cpu_kernel.h"
|
||||
#include "kernel/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class AddNCPUKernel : public CPUKernel {
|
||||
public:
|
||||
AddNCPUKernel() : input_num_(0) {}
|
||||
~AddNCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
void CheckParam(const CNodePtr &kernel_node);
|
||||
size_t input_num_;
|
||||
std::vector<size_t> output_shape_;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
AddN,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
AddNCPUKernel);
|
||||
MS_REG_CPU_KERNEL(AddN,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
AddNCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_CPU_ADDN_CPU_KERNEL_H_
|
|
@ -42,7 +42,7 @@ std::shared_ptr<CPUKernel> CPUKernelFactory::Create(const std::string &kernel_na
|
|||
MS_EXCEPTION_IF_NULL(kernel_info);
|
||||
const KernelBuildInfo *kernel_build_Info = kernel_info->select_kernel_build_info();
|
||||
MS_EXCEPTION_IF_NULL(kernel_build_Info);
|
||||
std::pair<bool, size_t> ret_pair = CPUKernelAttrCheck(kernel_name, kernel_build_Info);
|
||||
std::pair<bool, size_t> ret_pair = CPUKernelAttrCheck(kernel_name, *kernel_build_Info);
|
||||
if (ret_pair.first) {
|
||||
return (name_to_attr_creator_.find(kernel_name)->second)[ret_pair.second].second();
|
||||
}
|
||||
|
@ -50,7 +50,7 @@ std::shared_ptr<CPUKernel> CPUKernelFactory::Create(const std::string &kernel_na
|
|||
}
|
||||
|
||||
std::pair<bool, size_t> CPUKernelFactory::CPUKernelAttrCheck(const std::string &kernel_name,
|
||||
const KernelBuildInfo *kernel_info) {
|
||||
const KernelBuildInfo &kernel_info) {
|
||||
auto iter = name_to_attr_creator_.find(kernel_name);
|
||||
if (iter == name_to_attr_creator_.end()) {
|
||||
MS_LOG(INFO) << "Not registered CPU kernel: op[" << kernel_name << "]!";
|
||||
|
@ -59,27 +59,34 @@ std::pair<bool, size_t> CPUKernelFactory::CPUKernelAttrCheck(const std::string &
|
|||
auto creators = iter->second;
|
||||
for (size_t index = 0; index < creators.size(); ++index) {
|
||||
auto attr_creator = creators[index];
|
||||
for (size_t i = 0; i < kernel_info->GetInputNum(); ++i) {
|
||||
if (kernel_info->GetInputDeviceType(i) != attr_creator.first.GetInputAttr(i).first) {
|
||||
MS_LOG(WARNING) << "cpu kernel attr check failed. input index: " << i << ".";
|
||||
MS_LOG(WARNING) << "kernel info type:" << kernel_info->GetInputDeviceType(i) << ", "
|
||||
<< "register type:" << attr_creator.first.GetInputAttr(i).first;
|
||||
return std::make_pair(false, 0);
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < kernel_info->GetOutputNum(); ++i) {
|
||||
if (kernel_info->GetOutputDeviceType(i) != attr_creator.first.GetOutputAttr(i).first) {
|
||||
MS_LOG(WARNING) << "cpu kernel attr check failed. output index: " << i << ".";
|
||||
MS_LOG(WARNING) << "kernel info type:" << kernel_info->GetOutputDeviceType(i) << ", "
|
||||
<< "register type:" << attr_creator.first.GetOutputAttr(i).first;
|
||||
return std::make_pair(false, 0);
|
||||
}
|
||||
}
|
||||
if (CPUKernelSingleAttrCheck(attr_creator, kernel_info)) {
|
||||
return std::make_pair(true, index);
|
||||
}
|
||||
}
|
||||
return std::make_pair(false, 0);
|
||||
}
|
||||
|
||||
bool CPUKernelFactory::CPUKernelSingleAttrCheck(const std::pair<KernelAttr, CPUKernelCreator> &attr_creator,
|
||||
const KernelBuildInfo &kernel_info) {
|
||||
for (size_t i = 0; i < kernel_info.GetInputNum(); ++i) {
|
||||
if (kernel_info.GetInputDeviceType(i) != attr_creator.first.GetInputAttr(i).first) {
|
||||
MS_LOG(DEBUG) << "cpu kernel attr check failed. input index: " << i << ".";
|
||||
MS_LOG(DEBUG) << "kernel info type:" << kernel_info.GetInputDeviceType(i) << ", "
|
||||
<< "register type:" << attr_creator.first.GetInputAttr(i).first;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < kernel_info.GetOutputNum(); ++i) {
|
||||
if (kernel_info.GetOutputDeviceType(i) != attr_creator.first.GetOutputAttr(i).first) {
|
||||
MS_LOG(DEBUG) << "cpu kernel attr check failed. output index: " << i << ".";
|
||||
MS_LOG(DEBUG) << "kernel info type:" << kernel_info.GetOutputDeviceType(i) << ", "
|
||||
<< "register type:" << attr_creator.first.GetOutputAttr(i).first;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
std::vector<KernelAttr> CPUKernelFactory::GetSupportedKernelAttrList(const std::string &kernel_name) {
|
||||
std::vector<KernelAttr> result;
|
||||
auto iter = name_to_attr_creator_.find(kernel_name);
|
||||
|
|
|
@ -43,7 +43,9 @@ class CPUKernelFactory {
|
|||
CPUKernelFactory() = default;
|
||||
~CPUKernelFactory() = default;
|
||||
DISABLE_COPY_AND_ASSIGN(CPUKernelFactory)
|
||||
std::pair<bool, size_t> CPUKernelAttrCheck(const std::string &kernel_name, const KernelBuildInfo *kernel_info);
|
||||
std::pair<bool, size_t> CPUKernelAttrCheck(const std::string &kernel_name, const KernelBuildInfo &kernel_info);
|
||||
bool CPUKernelSingleAttrCheck(const std::pair<KernelAttr, CPUKernelCreator> &attr_creator,
|
||||
const KernelBuildInfo &kernel_info);
|
||||
std::map<std::string, std::vector<std::pair<KernelAttr, CPUKernelCreator>>> name_to_attr_creator_;
|
||||
};
|
||||
|
||||
|
|
|
@ -0,0 +1,78 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
||||
class Net2I(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net2I, self).__init__()
|
||||
self.addn = P.AddN()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.addn((x, y))
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_net_2Input():
|
||||
x = np.arange(2 * 3 * 2).reshape(2, 3, 2).astype(np.float32)
|
||||
y = np.arange(2 * 3 * 2).reshape(2, 3, 2).astype(np.float32)
|
||||
addn = Net2I()
|
||||
output = addn(Tensor(x, mstype.float32), Tensor(y, mstype.float32))
|
||||
print("output:\n", output)
|
||||
expect_result = [[[0., 2.],
|
||||
[4., 6.],
|
||||
[8., 10.]],
|
||||
[[12., 14.],
|
||||
[16., 18.],
|
||||
[20., 22.]]]
|
||||
|
||||
assert (output.asnumpy() == expect_result).all()
|
||||
|
||||
class Net3I(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net3I, self).__init__()
|
||||
self.addn = P.AddN()
|
||||
|
||||
def construct(self, x, y, z):
|
||||
return self.addn((x, y, z))
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_net_3Input():
|
||||
x = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
|
||||
y = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
|
||||
z = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
|
||||
addn = Net3I()
|
||||
output = addn(Tensor(x, mstype.float32), Tensor(y, mstype.float32), Tensor(z, mstype.float32))
|
||||
print("output:\n", output)
|
||||
expect_result = [[0., 3., 6.],
|
||||
[9., 12., 15]]
|
||||
|
||||
assert (output.asnumpy() == expect_result).all()
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_net_2Input()
|
||||
test_net_3Input()
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
Loading…
Reference in New Issue