forked from mindspore-Ecosystem/mindspore
!21639 modify code check for R1.3
Merge pull request !21639 from lilei/modify_code_check_R1.3
This commit is contained in:
commit
24a80c1047
|
@ -530,7 +530,7 @@ class Parameter(Tensor_):
|
|||
Initialize the parameter's data.
|
||||
|
||||
Args:
|
||||
layout (Union[None, list(list(int))]): Parameter slice
|
||||
layout (Union[None, tuple(list(int))]): Parameter slice
|
||||
layout [dev_mat, tensor_map, slice_shape]. Default: None.
|
||||
|
||||
- dev_mat (list(int)): Device matrix.
|
||||
|
|
|
@ -162,6 +162,8 @@ class _AutoParallelContext:
|
|||
Args:
|
||||
loss_repeated_mean (bool): The loss_repeated_mean flag.
|
||||
"""
|
||||
if not isinstance(loss_repeated_mean, bool):
|
||||
raise TypeError(f"The type of loss_repeated_mean must be bool, but got {type(loss_repeated_mean)}.")
|
||||
self.check_context_handle()
|
||||
self._context_handle.set_loss_repeated_mean(loss_repeated_mean)
|
||||
|
||||
|
@ -229,7 +231,7 @@ class _AutoParallelContext:
|
|||
Set strategy checkpoint load path.
|
||||
|
||||
Args:
|
||||
strategy_ckpt_load_file (bool): Path to load parallel strategy checkpoint.
|
||||
strategy_ckpt_load_file (str): Path to load parallel strategy checkpoint.
|
||||
"""
|
||||
self.check_context_handle()
|
||||
self._context_handle.set_strategy_ckpt_load_file(strategy_ckpt_load_file)
|
||||
|
@ -323,8 +325,8 @@ class _AutoParallelContext:
|
|||
|
||||
if isinstance(indices, (list)):
|
||||
for index in indices:
|
||||
if not isinstance(index, int):
|
||||
raise TypeError('indices has invalid value')
|
||||
if not isinstance(index, int) or isinstance(index, bool):
|
||||
raise TypeError(f"The type of index must be int, but got {type(index)}.")
|
||||
else:
|
||||
raise TypeError('indices must be a python list')
|
||||
|
||||
|
@ -372,8 +374,8 @@ class _AutoParallelContext:
|
|||
self.check_context_handle()
|
||||
if isinstance(sizes, (list)):
|
||||
for size in sizes:
|
||||
if not isinstance(size, int):
|
||||
raise TypeError('sizes has invalid value')
|
||||
if not isinstance(size, int) or isinstance(size, bool):
|
||||
raise TypeError(f"The type of size must be int, but got {type(size)}.")
|
||||
else:
|
||||
raise TypeError('sizes must be a python list')
|
||||
|
||||
|
@ -453,6 +455,9 @@ class _AutoParallelContext:
|
|||
Raises:
|
||||
ValueError: If parallel mode is not supported.
|
||||
"""
|
||||
if not isinstance(communi_parallel_mode, str):
|
||||
raise TypeError(f"The type of communi_parallel_mode must be str, \
|
||||
but got {type(communi_parallel_mode)}.")
|
||||
self.check_context_handle()
|
||||
ret = self._context_handle.set_communi_parallel_mode(communi_parallel_mode)
|
||||
if ret is False:
|
||||
|
@ -472,8 +477,9 @@ class _AutoParallelContext:
|
|||
optimizer across devices.
|
||||
"""
|
||||
self.check_context_handle()
|
||||
if not isinstance(optimizer_weight_shard_size, int):
|
||||
raise TypeError('optimizer_weight_shard_size is invalid type')
|
||||
if not isinstance(optimizer_weight_shard_size, int) or isinstance(optimizer_weight_shard_size, bool):
|
||||
raise TypeError(f"The type of optimizer_weight_shard_size must be int, \
|
||||
but got {type(optimizer_weight_shard_size)}.")
|
||||
if optimizer_weight_shard_size <= 1:
|
||||
logger.warning("The setting 'optimizer_weight_shard_size' is invalid. "
|
||||
"Please use the integer larger than 1.")
|
||||
|
|
|
@ -194,7 +194,7 @@ class _CostModelContext:
|
|||
Set costmodel communication bias.
|
||||
|
||||
Args:
|
||||
bias (float): A parameter used in adjusting communication calculation for practice.
|
||||
communi_bias (float): A parameter used in adjusting communication calculation for practice.
|
||||
|
||||
Raises:
|
||||
ValueError: If context handle is none.
|
||||
|
@ -249,6 +249,8 @@ class _CostModelContext:
|
|||
Raises:
|
||||
ValueError: If context handle is none, or phase is not in {0, 1}.
|
||||
"""
|
||||
if not isinstance(phase, int) or isinstance(phase, bool):
|
||||
raise TypeError(f"The type of communi_const must be int, but got {type(phase)}.")
|
||||
if self._context_handle is None:
|
||||
raise ValueError("Context handle is none in context!!!")
|
||||
if phase not in (0, 1):
|
||||
|
@ -276,6 +278,8 @@ class _CostModelContext:
|
|||
Raises:
|
||||
ValueError: If context handle is none.
|
||||
"""
|
||||
if not isinstance(single_loop, bool):
|
||||
raise TypeError(f"The type of single_loop must be bool, but got {type(single_loop)}.")
|
||||
if self._context_handle is None:
|
||||
raise ValueError("Context handle is none in context!!!")
|
||||
self._context_handle.set_dp_algo_single_loop(single_loop)
|
||||
|
|
|
@ -72,14 +72,14 @@ def _set_fusion_strategy_by_idx(idx_list, group="hccl_world_group"):
|
|||
return
|
||||
finally:
|
||||
pass
|
||||
if isinstance(group, (str)):
|
||||
if isinstance(group, str):
|
||||
group_len = len(group)
|
||||
if (group_len > _MAX_GROUP_NAME_LEN or group_len == 0):
|
||||
raise ValueError('Group name len is out of range {_MAX_GROUP_NAME_LEN}')
|
||||
else:
|
||||
raise TypeError('Group must be a python str')
|
||||
|
||||
if isinstance(idx_list, (list)):
|
||||
if isinstance(idx_list, list):
|
||||
idx_len = len(idx_list)
|
||||
if idx_len == 0:
|
||||
raise ValueError('idx_list length is 0')
|
||||
|
@ -87,7 +87,7 @@ def _set_fusion_strategy_by_idx(idx_list, group="hccl_world_group"):
|
|||
raise TypeError('idx_list must be a python list')
|
||||
|
||||
for idx in idx_list:
|
||||
if isinstance(idx, (int)):
|
||||
if isinstance(idx, int):
|
||||
if idx < 0:
|
||||
raise ValueError('Idx < 0')
|
||||
else:
|
||||
|
@ -133,13 +133,13 @@ def _set_fusion_strategy_by_size(data_size_list, group="hccl_world_group"):
|
|||
finally:
|
||||
pass
|
||||
|
||||
if isinstance(group, (str)):
|
||||
if isinstance(group, str):
|
||||
group_len = len(group)
|
||||
if group_len > _MAX_GROUP_NAME_LEN or group_len == 0:
|
||||
raise ValueError('Group name is out of range {_MAX_GROUP_NAME_LEN}')
|
||||
else:
|
||||
raise TypeError('Group must be a python str')
|
||||
if isinstance(data_size_list, (list)):
|
||||
if isinstance(data_size_list, list):
|
||||
len_data_size = len(data_size_list)
|
||||
if len_data_size == 0:
|
||||
raise ValueError('data_size_list length is 0')
|
||||
|
|
|
@ -21,7 +21,7 @@ from mindspore._checkparam import args_type_check
|
|||
__all__ = ["get_algo_parameters", "reset_algo_parameters", "set_algo_parameters"]
|
||||
|
||||
|
||||
class _AlgoParameterConfig():
|
||||
class _AlgoParameterConfig:
|
||||
"""
|
||||
_AlgoParameterConfig is the configuration of setting parameters used in th algorithm.
|
||||
|
||||
|
|
Loading…
Reference in New Issue