forked from mindspore-Ecosystem/mindspore
!1248 support load pretrain ckpt and modify weight initializer
Merge pull request !1248 from meixiaowei/master
This commit is contained in:
commit
1c4b8b14dd
|
@ -46,6 +46,7 @@ Parameters for both training and evaluating can be set in config.py.
|
|||
"momentum": 0.9, # momentum optimizer
|
||||
"weight_decay": 1e-4, # weight decay
|
||||
"epoch_size": 120, # epoch sizes for training
|
||||
"pretrain_epoch_size": 0, # epoch size of pretrain checkpoint
|
||||
"buffer_size": 1000, # number of queue size in data preprocessing
|
||||
"image_height": 224, # image height
|
||||
"image_width": 224, # image width
|
||||
|
@ -68,10 +69,10 @@ Parameters for both training and evaluating can be set in config.py.
|
|||
|
||||
```
|
||||
# distributed training
|
||||
sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH]
|
||||
sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_PATH](optional)
|
||||
|
||||
# standalone training
|
||||
sh run_standalone_train.sh [DATASET_PATH]
|
||||
sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_PATH](optional)
|
||||
```
|
||||
|
||||
#### Launch
|
||||
|
@ -79,9 +80,15 @@ sh run_standalone_train.sh [DATASET_PATH]
|
|||
```bash
|
||||
# distributed training example(8p)
|
||||
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc
|
||||
|
||||
|
||||
If you want to load pretrained ckpt file,
|
||||
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc ./ckpt/pretrained.ckpt
|
||||
|
||||
# standalone training example(1p)
|
||||
sh run_standalone_train.sh dataset/ilsvrc
|
||||
|
||||
f you want to load pretrained ckpt file,
|
||||
sh run_standalone_train.sh dataset/ilsvrc ./ckpt/pretrained.ckpt
|
||||
```
|
||||
|
||||
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
|
||||
|
|
|
@ -24,6 +24,7 @@ config = ed({
|
|||
"momentum": 0.9,
|
||||
"weight_decay": 1e-4,
|
||||
"epoch_size": 120,
|
||||
"pretrain_epoch_size": 0,
|
||||
"buffer_size": 1000,
|
||||
"image_height": 224,
|
||||
"image_width": 224,
|
||||
|
|
|
@ -21,7 +21,7 @@ def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr):
|
|||
lr = float(init_lr) + lr_inc * current_step
|
||||
return lr
|
||||
|
||||
def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch):
|
||||
def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch=120, global_step=0):
|
||||
"""
|
||||
generate learning rate array with cosine
|
||||
|
||||
|
@ -30,6 +30,7 @@ def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch):
|
|||
steps_per_epoch(int): steps size of one epoch
|
||||
warmup_epochs(int): number of warmup epochs
|
||||
max_epoch(int): total epochs of training
|
||||
global_step(int): the current start index of lr array
|
||||
Returns:
|
||||
np.array, learning rate array
|
||||
"""
|
||||
|
@ -49,4 +50,7 @@ def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch):
|
|||
decayed = linear_decay * cosine_decay + 0.00001
|
||||
lr = base_lr * decayed
|
||||
lr_each_step.append(lr)
|
||||
return np.array(lr_each_step).astype(np.float32)
|
||||
|
||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||
learning_rate = lr_each_step[global_step:]
|
||||
return learning_rate
|
||||
|
|
|
@ -14,9 +14,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 2 ]
|
||||
if [ $# != 2 ] && [ $# != 3 ]
|
||||
then
|
||||
echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH]"
|
||||
echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_PATH](optional)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
@ -31,6 +31,11 @@ PATH1=$(get_real_path $1)
|
|||
PATH2=$(get_real_path $2)
|
||||
echo $PATH1
|
||||
echo $PATH2
|
||||
if [ $# == 3 ]
|
||||
then
|
||||
PATH3=$(get_real_path $3)
|
||||
echo $PATH3
|
||||
fi
|
||||
|
||||
if [ ! -f $PATH1 ]
|
||||
then
|
||||
|
@ -44,6 +49,12 @@ then
|
|||
exit 1
|
||||
fi
|
||||
|
||||
if [ $# == 3 ] && [ ! -f $PATH3 ]
|
||||
then
|
||||
echo "error: PRETRAINED_PATH=$PATH3 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=8
|
||||
export RANK_SIZE=8
|
||||
|
@ -61,6 +72,15 @@ do
|
|||
cd ./train_parallel$i || exit
|
||||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||
env > env.log
|
||||
python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log &
|
||||
if [ $# == 2 ]
|
||||
then
|
||||
python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log &
|
||||
fi
|
||||
|
||||
if [ $# == 3 ]
|
||||
then
|
||||
python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 --pre_trained=$PATH3 &> log &
|
||||
fi
|
||||
|
||||
cd ..
|
||||
done
|
||||
|
|
|
@ -14,9 +14,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 1 ]
|
||||
if [ $# != 1 ] && [ $# != 2 ]
|
||||
then
|
||||
echo "Usage: sh run_standalone_train.sh [DATASET_PATH]"
|
||||
echo "Usage: sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_PATH](optional)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
@ -29,12 +29,23 @@ get_real_path(){
|
|||
}
|
||||
PATH1=$(get_real_path $1)
|
||||
echo $PATH1
|
||||
if [ $# == 2 ]
|
||||
then
|
||||
PATH2=$(get_real_path $2)
|
||||
echo $PATH2
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH1 ]
|
||||
then
|
||||
echo "error: DATASET_PATH=$PATH1 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $# == 2 ] && [ ! -f $PATH2 ]
|
||||
then
|
||||
echo "error: PRETRAINED_PATH=$PATH2 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=1
|
||||
|
@ -52,5 +63,13 @@ cp *.sh ./train
|
|||
cd ./train || exit
|
||||
echo "start training for device $DEVICE_ID"
|
||||
env > env.log
|
||||
python train.py --do_train=True --dataset_path=$PATH1 &> log &
|
||||
if [ $# == 1 ]
|
||||
then
|
||||
python train.py --do_train=True --dataset_path=$PATH1 &> log &
|
||||
fi
|
||||
|
||||
if [ $# == 2 ]
|
||||
then
|
||||
python train.py --do_train=True --dataset_path=$PATH1 --pre_trained=$PATH2 &> log &
|
||||
fi
|
||||
cd ..
|
||||
|
|
|
@ -44,6 +44,7 @@ parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
|||
parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
|
||||
parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
|
@ -77,9 +78,13 @@ if __name__ == '__main__':
|
|||
repeat_num=epoch_size, batch_size=config.batch_size)
|
||||
step_size = dataset.get_dataset_size()
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||
if args_opt.pre_trained:
|
||||
param_dict = load_checkpoint(args_opt.pre_trained)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
# learning rate strategy with cosine
|
||||
lr = Tensor(warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size))
|
||||
lr = Tensor(warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, 120,
|
||||
config.pretrain_epoch_size*step_size))
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
|
||||
config.weight_decay, config.loss_scale)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', keep_batchnorm_fp32=False,
|
||||
|
|
Loading…
Reference in New Issue