diff --git a/mindspore/ccsrc/kernel/cpu/transpose_cpu_kernel.cc b/mindspore/ccsrc/kernel/cpu/transpose_cpu_kernel.cc new file mode 100644 index 00000000000..f2ac9350cba --- /dev/null +++ b/mindspore/ccsrc/kernel/cpu/transpose_cpu_kernel.cc @@ -0,0 +1,64 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "kernel/cpu/transpose_cpu_kernel.h" +#include "device/cpu/cpu_device_address.h" +namespace mindspore { +namespace kernel { +const size_t kMaxDim = 100; +void TransposeCPUFwdKernel::InitKernel(const CNodePtr &kernel_node) { + MS_EXCEPTION_IF_NULL(kernel_node); + shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 0); + axis_ = AnfAlgo::GetNodeAttr>(kernel_node, "perm"); + if (shape_.size() != axis_.size()) { + MS_LOG(EXCEPTION) << "The size of input shape and transpose axis shape must be equal."; + } +} +bool TransposeCPUFwdKernel::Launch(const std::vector &inputs, + const std::vector & /*workspace*/, + const std::vector &outputs) { + auto input = reinterpret_cast(inputs[0]->addr); + auto output = reinterpret_cast(outputs[0]->addr); + size_t size = IntToSize(inputs[0]->size / sizeof(float)); + size_t shape_size = IntToSize(shape_.size()); + if (shape_size > kMaxDim) { + MS_LOG(EXCEPTION) << "Input is " << shape_size << "-D, but transpose supports max " << kMaxDim << "-D inputs."; + } + size_t pos_array[kMaxDim]; + size_t size_offset[kMaxDim]; + size_offset[0] = size / shape_[0]; + for (size_t i = 1; i < shape_size; i++) { + size_offset[i] = size_offset[SizeToInt(i) - 1] / shape_[i]; + } + for (size_t position = 0; position < size; position += 1) { + size_t temp_position = position; + pos_array[0] = temp_position / size_offset[0]; + for (size_t i = 1; i < shape_size; i++) { + temp_position -= pos_array[SizeToInt(i) - 1] * size_offset[i - 1]; + pos_array[i] = temp_position / size_offset[i]; + } + size_t new_position = pos_array[axis_[SizeToInt(shape_size) - 1]]; + size_t new_position_size = 1; + for (int j = shape_size - 2; j >= 0; j--) { + new_position_size *= shape_[axis_[j + 1]]; + new_position += pos_array[axis_[j]] * new_position_size; + } + output[new_position] = input[position]; + } + return true; +} +} // namespace kernel +} // namespace mindspore diff --git a/mindspore/ccsrc/kernel/cpu/transpose_cpu_kernel.h b/mindspore/ccsrc/kernel/cpu/transpose_cpu_kernel.h new file mode 100644 index 00000000000..d882f4fa510 --- /dev/null +++ b/mindspore/ccsrc/kernel/cpu/transpose_cpu_kernel.h @@ -0,0 +1,44 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#ifndef MINDSPORE_CCSRC_KERNEL_CPU_TRANSPOSE_CPU_KERNEL_H_ +#define MINDSPORE_CCSRC_KERNEL_CPU_TRANSPOSE_CPU_KERNEL_H_ +#include +#include +#include +#include "kernel/cpu/cpu_kernel.h" +#include "kernel/cpu/cpu_kernel_factory.h" +namespace mindspore { +namespace kernel { +class TransposeCPUFwdKernel : public CPUKernel { + public: + TransposeCPUFwdKernel() = default; + ~TransposeCPUFwdKernel() override = default; + + void InitKernel(const CNodePtr &kernel_node) override; + + bool Launch(const std::vector &inputs, const std::vector &workspace, + const std::vector &outputs) override; + + private: + std::vector shape_; + std::vector axis_; +}; + +MS_REG_CPU_KERNEL(Transpose, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), + TransposeCPUFwdKernel); +} // namespace kernel +} // namespace mindspore +#endif // MINDSPORE_CCSRC_KERNEL_CPU_TRANSPOSE_CPU_KERNEL_H_ diff --git a/tests/st/ops/cpu/test_transpose_op.py b/tests/st/ops/cpu/test_transpose_op.py new file mode 100644 index 00000000000..812d1f37057 --- /dev/null +++ b/tests/st/ops/cpu/test_transpose_op.py @@ -0,0 +1,145 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import pytest +import numpy as np +from mindspore import Tensor +from mindspore.ops import operations as P +from mindspore.common.api import ms_function +from mindspore.common.initializer import initializer +from mindspore.common.parameter import Parameter +import mindspore.nn as nn +import mindspore.context as context + +context.set_context(device_target='CPU') + + +class Transpose(nn.Cell): + def __init__(self): + super(Transpose, self).__init__() + self.transpose = P.Transpose() + + self.x_2D = Parameter(initializer(Tensor(np.arange(5 * 6).reshape(5, 6).astype(np.float32)), [5, 6]), + name='x_2D') + self.perm_2D = (1, 0) + + self.x_3D = Parameter(initializer(Tensor(np.arange(2 * 2 * 4).reshape(2, 2, 4).astype(np.float32)), [2, 2, 4]), + name='x_3D') + self.perm_3D = (1, 0, 2) + + self.x_4D = Parameter( + initializer(Tensor(np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5).astype(np.float32)), [2, 3, 4, 5]), + name='x_4D') + self.perm_4D = (0, 1, 2, 3) + + self.x_5D = Parameter( + initializer(Tensor(np.arange(1 * 2 * 3 * 4 * 5).reshape(1, 2, 3, 4, 5).astype(np.float32)), + [1, 2, 3, 4, 5]), name='x_5D') + self.perm_5D = (1, 0, 3, 4, 2) + + @ms_function + def construct(self): + return (self.transpose(self.x_2D, self.perm_2D), self.transpose(self.x_3D, self.perm_3D), + self.transpose(self.x_4D, self.perm_4D), self.transpose(self.x_5D, self.perm_5D)) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_transpose(): + transpose = Transpose() + output = transpose() + + expect0 = np.array([[[0, 6, 12, 18, 24], + [1, 7, 13, 19, 25], + [2, 8, 14, 20, 26], + [3, 9, 15, 21, 27], + [4, 10, 16, 22, 28], + [5, 11, 17, 23, 29]]]).astype(np.float32) + expect1 = np.array([[[[0, 1, 2, 3], + [8, 9, 10, 11]], + [[4, 5, 6, 7], + [12, 13, 14, 15]]]]).astype(np.float32) + expect2 = np.array([[[[[0, 1, 2, 3, 4], + [5, 6, 7, 8, 9], + [10, 11, 12, 13, 14], + [15, 16, 17, 18, 19]], + [[20, 21, 22, 23, 24], + [25, 26, 27, 28, 29], + [30, 31, 32, 33, 34], + [35, 36, 37, 38, 39]], + [[40, 41, 42, 43, 44], + [45, 46, 47, 48, 49], + [50, 51, 52, 53, 54], + [55, 56, 57, 58, 59]]], + + [[[60, 61, 62, 63, 64], + [65, 66, 67, 68, 69], + [70, 71, 72, 73, 74], + [75, 76, 77, 78, 79]], + [[80, 81, 82, 83, 84], + [85, 86, 87, 88, 89], + [90, 91, 92, 93, 94], + [95, 96, 97, 98, 99]], + [[100, 101, 102, 103, 104], + [105, 106, 107, 108, 109], + [110, 111, 112, 113, 114], + [115, 116, 117, 118, 119]]]]]).astype(np.float32) + expect3 = np.array([[[[[[0, 20, 40], + [1, 21, 41], + [2, 22, 42], + [3, 23, 43], + [4, 24, 44]], + [[5, 25, 45], + [6, 26, 46], + [7, 27, 47], + [8, 28, 48], + [9, 29, 49]], + [[10, 30, 50], + [11, 31, 51], + [12, 32, 52], + [13, 33, 53], + [14, 34, 54]], + [[15, 35, 55], + [16, 36, 56], + [17, 37, 57], + [18, 38, 58], + [19, 39, 59]]]], + + [[[[60, 80, 100], + [61, 81, 101], + [62, 82, 102], + [63, 83, 103], + [64, 84, 104]], + [[65, 85, 105], + [66, 86, 106], + [67, 87, 107], + [68, 88, 108], + [69, 89, 109]], + [[70, 90, 110], + [71, 91, 111], + [72, 92, 112], + [73, 93, 113], + [74, 94, 114]], + [[75, 95, 115], + [76, 96, 116], + [77, 97, 117], + [78, 98, 118], + [79, 99, 119]]]]]]).astype(np.float32) + assert (output[0].asnumpy() == expect0).all() + assert (output[1].asnumpy() == expect1).all() + assert (output[2].asnumpy() == expect2).all() + assert (output[3].asnumpy() == expect3).all() +test_transpose() \ No newline at end of file