forked from mindspore-Ecosystem/mindspore
commit
19c200e9cc
|
@ -42,7 +42,6 @@ class for_loop_with_break(Cell):
|
|||
x *= 3
|
||||
break
|
||||
x = x * 2
|
||||
pass
|
||||
return x
|
||||
|
||||
|
||||
|
@ -71,9 +70,7 @@ class for_loop_with_cont_break(Cell):
|
|||
if i > 5:
|
||||
x *= 3
|
||||
break
|
||||
x *= 2
|
||||
x = x * 2
|
||||
pass
|
||||
return x
|
||||
|
||||
|
||||
|
@ -82,7 +79,7 @@ class for_nested_loop_with_break(Cell):
|
|||
super().__init__()
|
||||
|
||||
def construct(self, x):
|
||||
for i in range(3):
|
||||
for _ in range(3):
|
||||
for j in range(5):
|
||||
if j > 3:
|
||||
x *= 2
|
||||
|
|
|
@ -12,13 +12,9 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, ms_function
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
@ms_function
|
||||
|
@ -37,7 +33,7 @@ def test_net():
|
|||
c3 = Tensor([1], mstype.int32)
|
||||
expect = Tensor([21], mstype.int32)
|
||||
ret = t1_while(c1, c2, c3)
|
||||
assert (ret == expect)
|
||||
assert ret == expect
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -17,7 +17,7 @@ import numpy as np
|
|||
import mindspore.common.dtype as mstype
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, ms_function
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_id=5, device_target="Ascend")
|
||||
|
|
|
@ -16,10 +16,8 @@ import numpy as np
|
|||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, Parameter, Model, ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore import Tensor, Model, ms_function
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
|
|
@ -19,8 +19,8 @@ curr_path = os.path.abspath(os.curdir)
|
|||
file_memreuse = curr_path + "/mem_reuse_check/memreuse.ir"
|
||||
file_normal = curr_path + "/mem_reuse_check/normal_mem.ir"
|
||||
checker = os.path.exists(file_memreuse)
|
||||
assert (checker, True)
|
||||
assert checker == True
|
||||
checker = os.path.exists(file_normal)
|
||||
assert (checker, True)
|
||||
assert checker == True
|
||||
checker = filecmp.cmp(file_memreuse, file_normal)
|
||||
assert (checker, True)
|
||||
assert checker == True
|
||||
|
|
|
@ -12,10 +12,10 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import argparse
|
||||
import numpy as np
|
||||
import os
|
||||
import random
|
||||
import argparse
|
||||
import numpy as np
|
||||
from resnet import resnet50
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
|
@ -31,7 +31,6 @@ from mindspore.ops import functional as F
|
|||
from mindspore.ops import operations as P
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
|
@ -143,11 +142,8 @@ if __name__ == '__main__':
|
|||
model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
|
||||
|
||||
if args_opt.do_eval:
|
||||
# if args_opt.checkpoint_path:
|
||||
# param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
# load_param_into_net(net, param_dict)
|
||||
eval_dataset = create_dataset(1, training=False)
|
||||
res = model.eval(eval_dataset)
|
||||
print("result: ", res)
|
||||
checker = os.path.exists("./memreuse.ir")
|
||||
assert (checker, True)
|
||||
assert checker == True
|
||||
|
|
|
@ -12,10 +12,10 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import argparse
|
||||
import numpy as np
|
||||
import os
|
||||
import random
|
||||
import argparse
|
||||
import numpy as np
|
||||
from resnet import resnet50
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
|
@ -31,7 +31,6 @@ from mindspore.ops import functional as F
|
|||
from mindspore.ops import operations as P
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
|
@ -143,11 +142,8 @@ if __name__ == '__main__':
|
|||
model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
|
||||
|
||||
if args_opt.do_eval:
|
||||
# if args_opt.checkpoint_path:
|
||||
# param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
# load_param_into_net(net, param_dict)
|
||||
eval_dataset = create_dataset(1, training=False)
|
||||
res = model.eval(eval_dataset)
|
||||
print("result: ", res)
|
||||
checker = os.path.exists("./normal_memreuse.ir")
|
||||
assert (checker, True)
|
||||
assert checker == True
|
||||
|
|
|
@ -21,7 +21,7 @@ import pytest
|
|||
@pytest.mark.env_single
|
||||
def test_nccl_lenet():
|
||||
return_code = os.system("mpirun -n 8 pytest -s test_nccl_lenet.py")
|
||||
assert (return_code == 0)
|
||||
assert return_code == 0
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -29,7 +29,7 @@ def test_nccl_lenet():
|
|||
@pytest.mark.env_single
|
||||
def test_nccl_all_reduce_op():
|
||||
return_code = os.system("mpirun -n 8 pytest -s test_nccl_all_reduce_op.py")
|
||||
assert (return_code == 0)
|
||||
assert return_code == 0
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -37,7 +37,7 @@ def test_nccl_all_reduce_op():
|
|||
@pytest.mark.env_single
|
||||
def test_nccl_all_gather_op():
|
||||
return_code = os.system("mpirun -n 8 pytest -s test_nccl_all_gather_op.py")
|
||||
assert (return_code == 0)
|
||||
assert return_code == 0
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -45,4 +45,4 @@ def test_nccl_all_gather_op():
|
|||
@pytest.mark.env_single
|
||||
def test_nccl_reduce_scatter_op():
|
||||
return_code = os.system("mpirun -n 8 pytest -s test_nccl_reduce_scatter_op.py")
|
||||
assert (return_code == 0)
|
||||
assert return_code == 0
|
||||
|
|
|
@ -51,4 +51,4 @@ def test_AllGather():
|
|||
diff = output.asnumpy() - expect
|
||||
error = np.ones(shape=expect.shape) * 1.0e-5
|
||||
assert np.all(diff < error)
|
||||
assert (output.shape() == expect.shape)
|
||||
assert output.shape() == expect.shape
|
||||
|
|
|
@ -19,7 +19,7 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.communication.management import init, get_rank, get_group_size
|
||||
from mindspore.communication.management import init, get_group_size
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
|
@ -94,8 +94,8 @@ def test_lenet_nccl():
|
|||
data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([net.batch_size]).astype(np.int32))
|
||||
start = datetime.datetime.now()
|
||||
for i in range(epoch):
|
||||
for step in range(mini_batch):
|
||||
for _ in range(epoch):
|
||||
for _ in range(mini_batch):
|
||||
loss = train_network(data, label)
|
||||
losses.append(loss.asnumpy())
|
||||
end = datetime.datetime.now()
|
||||
|
@ -105,4 +105,4 @@ def test_lenet_nccl():
|
|||
with open("ms_loss.txt", "w") as fo2:
|
||||
fo2.write("loss:")
|
||||
fo2.write(str(losses[-5:]))
|
||||
assert (losses[-1] < 0.01)
|
||||
assert losses[-1] < 0.01
|
||||
|
|
|
@ -54,23 +54,23 @@ def test_ReduceScatter():
|
|||
reduce_scatter = Net()
|
||||
output = reduce_scatter()
|
||||
|
||||
sum = np.ones([size, 1, 3, 3]).astype(np.float32) * 0
|
||||
sum_ones = np.ones([size, 1, 3, 3]).astype(np.float32) * 0
|
||||
for i in range(size):
|
||||
sum += np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 1)
|
||||
expect0 = sum[rank: rank + 1]
|
||||
sum_ones += np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 1)
|
||||
expect0 = sum_ones[rank: rank + 1]
|
||||
diff0 = output[0].asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert (output[0].shape() == expect0.shape)
|
||||
assert output[0].shape() == expect0.shape
|
||||
|
||||
expect1 = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * size
|
||||
diff1 = output[1].asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert (output[1].shape() == expect1.shape)
|
||||
assert output[1].shape() == expect1.shape
|
||||
|
||||
expect2 = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * 1
|
||||
diff2 = output[2].asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert (output[2].shape() == expect2.shape)
|
||||
assert output[2].shape() == expect2.shape
|
||||
|
|
|
@ -13,7 +13,6 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import mindspore.nn as nn
|
||||
from mindspore.nn import Dense
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
|
|
|
@ -15,10 +15,9 @@
|
|||
|
||||
"""train bert network without lossscale"""
|
||||
|
||||
import numpy as np
|
||||
import os
|
||||
import pytest
|
||||
from numpy import allclose
|
||||
import numpy as np
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine.datasets as de
|
||||
|
@ -28,7 +27,7 @@ from mindspore import log as logger
|
|||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertNetworkWithLoss, BertTrainOneStepWithLossScaleCell
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.train.callback import Callback, LossMonitor
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
|
||||
from mindspore.train.model import Model
|
||||
|
||||
|
|
|
@ -12,11 +12,7 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Dense
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
|
|
|
@ -12,10 +12,9 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import math
|
||||
import time
|
||||
import numpy as np
|
||||
import pytest
|
||||
import time
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context, Tensor, ParameterTuple
|
||||
|
@ -152,10 +151,10 @@ def test_ascend_pynative_lenet():
|
|||
fw_output = net(inputs)
|
||||
loss_output = criterion(fw_output, labels)
|
||||
grads = train_network(inputs, labels)
|
||||
success = optimizer(grads)
|
||||
optimizer(grads)
|
||||
end_time = time.time()
|
||||
cost_time = end_time - start_time
|
||||
total_time = total_time + cost_time
|
||||
|
||||
print("======epoch: ", epoch, " loss: ", loss_output.asnumpy(), " cost time: ", cost_time)
|
||||
assert (loss_output.asnumpy() < 0.1)
|
||||
assert loss_output.asnumpy() < 0.1
|
||||
|
|
|
@ -13,18 +13,15 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test model train """
|
||||
import numpy as np
|
||||
import os
|
||||
import numpy as np
|
||||
from apply_momentum import ApplyMomentum
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn as wrap
|
||||
from mindspore import Tensor, Parameter, Model
|
||||
from mindspore import Tensor, Model
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.summary.summary_record import SummaryRecord
|
||||
|
||||
|
|
|
@ -12,12 +12,11 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import os
|
||||
import pytest
|
||||
import random
|
||||
import shutil
|
||||
import time
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
|
@ -76,7 +75,7 @@ class SummaryNet(nn.Cell):
|
|||
return z
|
||||
|
||||
|
||||
def train_summary_record_scalar_for_1(test_writer, steps, fwd_x, fwd_y):
|
||||
def train_summary_record_scalar_for_1(test_writer, steps):
|
||||
net = SummaryNet()
|
||||
out_me_dict = {}
|
||||
for i in range(0, steps):
|
||||
|
@ -89,12 +88,9 @@ def train_summary_record_scalar_for_1(test_writer, steps, fwd_x, fwd_y):
|
|||
return out_me_dict
|
||||
|
||||
|
||||
def me_scalar_summary(steps, tag=None, value=None):
|
||||
def me_scalar_summary(steps):
|
||||
with SummaryRecord(SUMMARY_DIR_ME_TEMP) as test_writer:
|
||||
x = Tensor(np.array([1.1]).astype(np.float32))
|
||||
y = Tensor(np.array([1.2]).astype(np.float32))
|
||||
|
||||
out_me_dict = train_summary_record_scalar_for_1(test_writer, steps, x, y)
|
||||
out_me_dict = train_summary_record_scalar_for_1(test_writer, steps)
|
||||
|
||||
return out_me_dict
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
from resnet_torch import resnet50
|
||||
|
||||
from mindspore import Tensor
|
||||
|
|
|
@ -12,10 +12,10 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import argparse
|
||||
import numpy as np
|
||||
import os
|
||||
import random
|
||||
import argparse
|
||||
import numpy as np
|
||||
from resnet import resnet50
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
|
|
|
@ -13,11 +13,11 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import os
|
||||
import pytest
|
||||
import random
|
||||
import time
|
||||
import pytest
|
||||
import numpy as np
|
||||
from resnet import resnet50
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
|
@ -134,7 +134,7 @@ class LossGet(Callback):
|
|||
return self._loss
|
||||
|
||||
|
||||
def train_process(device_id, epoch_size, num_classes, device_num, batch_size):
|
||||
def train_process(device_id, epoch_size, num_classes, batch_size):
|
||||
os.system("mkdir " + str(device_id))
|
||||
os.chdir(str(device_id))
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
@ -181,15 +181,14 @@ def eval(batch_size, num_classes):
|
|||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_resnet_cifar_1p():
|
||||
device_num = 1
|
||||
epoch_size = 1
|
||||
num_classes = 10
|
||||
batch_size = 32
|
||||
device_id = 0
|
||||
train_process(device_id, epoch_size, num_classes, device_num, batch_size)
|
||||
train_process(device_id, epoch_size, num_classes, batch_size)
|
||||
time.sleep(3)
|
||||
acc = eval(batch_size, num_classes)
|
||||
os.chdir("../")
|
||||
os.system("rm -rf " + str(device_id))
|
||||
print("End training...")
|
||||
assert (acc['acc'] > 0.35)
|
||||
assert acc['acc'] > 0.35
|
||||
|
|
|
@ -13,10 +13,10 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import os
|
||||
import pytest
|
||||
import random
|
||||
import numpy as np
|
||||
import pytest
|
||||
from multiprocessing import Process, Queue
|
||||
from resnet import resnet50
|
||||
|
||||
|
@ -168,7 +168,7 @@ def train_process(q, device_id, epoch_size, num_classes, device_num, batch_size,
|
|||
dataset = create_dataset(epoch_size, training=True,
|
||||
batch_size=batch_size, rank_id=device_id, rank_size=device_num,
|
||||
enable_hccl=enable_hccl)
|
||||
batch_num = dataset.get_dataset_size()
|
||||
|
||||
loss_cb = LossGet()
|
||||
model.train(epoch_size, dataset, callbacks=[loss_cb])
|
||||
q.put(loss_cb.get_loss())
|
||||
|
@ -207,4 +207,4 @@ def test_resnet_cifar_8p():
|
|||
for i in range(device_num):
|
||||
os.system("rm -rf " + str(i))
|
||||
print("End training...")
|
||||
assert (loss < 2.0)
|
||||
assert loss < 2.0
|
||||
|
|
Loading…
Reference in New Issue