!904 fix avgpool and add dimension check for groupnorm

Merge pull request !904 from JichenZhao/groupn
This commit is contained in:
mindspore-ci-bot 2020-05-06 10:42:05 +08:00 committed by Gitee
commit 108ef72aaf
3 changed files with 35 additions and 18 deletions

View File

@ -185,6 +185,10 @@ def _channel_check(channel, num_channel):
raise ValueError("the input channel is not equal with num_channel")
@constexpr
def _shape_check(in_shape):
if len(in_shape) != 4:
raise ValueError("The input must has 4 dims")
@constexpr
def _shape_infer(x_shape, num_feature):
"""global batch normalization shape and axes infer"""
if len(x_shape) == 4:
@ -539,7 +543,8 @@ class GroupNorm(Cell):
self.reduce_sum = P.ReduceSum(keep_dims=True)
self.sqrt = P.Sqrt()
def construct(self, x):
def _cal_output(self, x):
"""calculate groupnorm output"""
batch, channel, height, width = self.shape(x)
_channel_check(channel, self.num_channels)
x = self.reshape(x, (batch, self.num_groups, channel*height*width/self.num_groups))
@ -551,6 +556,11 @@ class GroupNorm(Cell):
output = x * self.gamma + self.beta
return output
def construct(self, x):
_shape_check(self.shape(x))
output = self._cal_output(x)
return output
def extend_repr(self):
"""Display instance object as string."""
s = 'num_groups={}, num_channels={}'.format(self.num_groups, self.num_channels)

View File

@ -16,6 +16,7 @@
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore._checkparam import Validator as validator
from mindspore.ops.primitive import constexpr
from ... import context
from ..cell import Cell
from ..._checkparam import Rel
@ -52,7 +53,10 @@ class _PoolNd(Cell):
def extend_repr(self):
return 'kernel_size={kernel_size}, stride={stride}, pad_mode={pad_mode}'.format(**self.__dict__)
@constexpr
def _shape_check(in_shape):
if len(in_shape) != 3:
raise ValueError("The input must has 3 dim")
class MaxPool2d(_PoolNd):
r"""
@ -218,13 +222,13 @@ class AvgPool1d(_PoolNd):
Applies a 1D average pooling over an input Tensor which can be regarded as a composition of 1D input planes.
Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, AvgPool1d outputs
regional average in the :math:`(W_{in})`-dimension. Given kernel size
:math:`ks = w_{ker}` and stride :math:`s = s_0`, the operation is as follows.
Typically the input is of shape :math:`(N_{in}, C_{in}, L_{in})`, AvgPool1d outputs
regional average in the :math:`(L_{in})`-dimension. Given kernel size
:math:`ks = l_{ker}` and stride :math:`s = s_0`, the operation is as follows.
.. math::
\text{output}(N_i, C_j, h_k, w) = \frac{1}{w_{ker}} \sum_{n=0}^{w_{ker}-1}
\text{input}(N_i, C_j, h_k, s_0 \times w + n)
\text{output}(N_i, C_j, l) = \frac{1}{l_{ker}} \sum_{n=0}^{l_{ker}-1}
\text{input}(N_i, C_j, s_0 \times l + n)
Note:
pad_mode for training only supports "same" and "valid".
@ -246,17 +250,17 @@ class AvgPool1d(_PoolNd):
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, L_{in})`.
Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Tensor of shape :math:`(N, C_{out}, L_{out})`.
Examples:
>>> pool = nn.AvgPool1d(kernel_size=3, strides=1)
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
>>> pool = nn.AvgPool1d(kernel_size=6, strides=1)
>>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
>>> output = pool(x)
>>> output.shape()
(1, 2, 4, 2)
(1, 3, 1)
"""
def __init__(self,
@ -277,14 +281,17 @@ class AvgPool1d(_PoolNd):
self.shape = F.shape
self.reduce_mean = P.ReduceMean(keep_dims=True)
self.slice = P.Slice()
self.expand = P.ExpandDims()
def construct(self, x):
batch, channel, high, width = self.shape(x)
_shape_check(self.shape(x))
batch, channel, width = self.shape(x)
if width == self.kernel_size[1]:
x = self.reduce_mean(x, 3)
x = self.reduce_mean(x, 2)
elif width - self.kernel_size[1] < self.stride[1]:
x = self.slice(x, (0, 0, 0, 0), (batch, channel, high, self.kernel_size[1]))
x = self.reduce_mean(x, 3)
x = self.slice(x, (0, 0, 0), (batch, channel, self.kernel_size[1]))
x = self.reduce_mean(x, 2)
else:
x = self.expand(x, 2)
x = self.avg_pool(x)
return x

View File

@ -69,6 +69,6 @@ class Avg1dNet(nn.Cell):
return self.avg1d(x)
def test_avg1d():
net = Avg1dNet(3, 1)
input = Tensor(np.random.randint(0, 255, [1, 3, 6, 6]).astype(np.float32))
net = Avg1dNet(6, 1)
input = Tensor(np.random.randint(0, 255, [1, 3, 6]).astype(np.float32))
_executor.compile(net, input)