forked from mindspore-Ecosystem/mindspore
delete unused arguments in test cases
This commit is contained in:
parent
8cfc05e4cf
commit
0b137e5312
|
@ -493,15 +493,35 @@ def test_assign_sub():
|
|||
1.1, dtype=np.float32)),
|
||||
name="assignsub_weight")
|
||||
|
||||
def construct(self, x, y, z):
|
||||
def construct(self, x):
|
||||
out = self.mul(x, self.mul_weight)
|
||||
out = self.assign_sub(self.assignsub_weight, out)
|
||||
return out
|
||||
|
||||
class SubNetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(SubNetWithLoss, self).__init__()
|
||||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
predict = self.network(x,)
|
||||
return self.loss(predict)
|
||||
|
||||
class SubGradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(SubGradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad_all(self.network)(x)
|
||||
|
||||
def compile_sub_net(net, x):
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x)
|
||||
|
||||
context.set_auto_parallel_context(device_num=64, global_rank=15)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
net = SubGradWrap(SubNetWithLoss(Net()))
|
||||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
z = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
compile_net(net, x, y, z)
|
||||
compile_sub_net(net, x)
|
||||
|
|
|
@ -20,7 +20,6 @@ from mindspore import Tensor, Parameter
|
|||
from mindspore import context
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.parallel import set_algo_parameters
|
||||
from mindspore.parallel._utils import _reset_op_id as reset_op_id
|
||||
|
@ -33,8 +32,8 @@ class NetWithLoss(nn.Cell):
|
|||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y, z, w):
|
||||
predict = self.network(x, y, z, w)
|
||||
def construct(self, x, y):
|
||||
predict = self.network(x, y)
|
||||
return self.loss(predict)
|
||||
|
||||
|
||||
|
@ -49,9 +48,9 @@ def test_common_parameter():
|
|||
self.cast1 = P.Cast()
|
||||
self.cast2 = P.Cast()
|
||||
|
||||
def construct(self, x, y, z, w):
|
||||
def construct(self, x, y):
|
||||
m1_result = self.matmul1(x, self.cast1(self.weight1, mstype.float32))
|
||||
m2_result = self.matmul2(z, self.cast2(self.weight1, mstype.float32))
|
||||
m2_result = self.matmul2(y, self.cast2(self.weight1, mstype.float32))
|
||||
m3_result = self.matmul3(m2_result, m1_result)
|
||||
|
||||
return m3_result
|
||||
|
@ -62,15 +61,13 @@ def test_common_parameter():
|
|||
set_algo_parameters(elementwise_op_strategy_follow=True)
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
z = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
w = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
|
||||
net = NetWithLoss(Net())
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
|
||||
_executor.compile(net, x, y, z, w, phase='train')
|
||||
_executor.compile(net, x, y, phase='train')
|
||||
strategies = _executor._get_strategy(net)
|
||||
expected_strategies = {'Default/network-Net/MatMul-op1': [[8, 1], [1, 1]],
|
||||
'Default/network-Net/MatMul-op3': [[8, 1], [1, 1]],
|
||||
|
|
|
@ -135,7 +135,11 @@ def test_dataset_interface_sens_shape_not_equal_loss():
|
|||
sens = Tensor(np.ones([256, 1024]), dtype=ms.float32)
|
||||
try:
|
||||
loss_scale_manager_sens(strategy1, sens)
|
||||
except BaseException:
|
||||
except ValueError:
|
||||
pass
|
||||
except TypeError:
|
||||
pass
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
|
@ -153,7 +157,7 @@ def test_input_not_in_parameter_layotu_dict():
|
|||
self.matmul_weight = Parameter(Tensor(np.ones([128, 256]), dtype=ms.float32), name="weight")
|
||||
self.transpose1 = P.Transpose().set_strategy(strategy1)
|
||||
|
||||
def construct(self, x, b):
|
||||
def construct(self, x):
|
||||
x = self.matmul(x, self.matmul_weight)
|
||||
x = self.transpose1(x, (1, 0))
|
||||
return x
|
||||
|
@ -163,7 +167,6 @@ def test_input_not_in_parameter_layotu_dict():
|
|||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num)
|
||||
predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32)
|
||||
net = Net(strategy1)
|
||||
net.set_train()
|
||||
net(predict, b)
|
||||
net(predict)
|
||||
|
|
|
@ -28,13 +28,13 @@ class GradWrap(nn.Cell):
|
|||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y, bias):
|
||||
return C.grad_all(self.network)(x, y, bias)
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
def compile_net(net, x, y, bias):
|
||||
def compile_net(net, x, y):
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x, y, bias)
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
def test_sum_as_loss_float16():
|
||||
|
@ -44,7 +44,7 @@ def test_sum_as_loss_float16():
|
|||
self.fc_nobias = P.MatMul(transpose_b=True).set_strategy(strategy0)
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy1)
|
||||
|
||||
def construct(self, x, y, bias):
|
||||
def construct(self, x, y):
|
||||
out = self.fc_nobias(x, y)
|
||||
out = self.reduce_sum(out, (0, 1))
|
||||
return out
|
||||
|
@ -57,8 +57,7 @@ def test_sum_as_loss_float16():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float16)
|
||||
y = Tensor(np.ones([64, 32]), dtype=ms.float16)
|
||||
bias = Tensor(np.ones([64]), dtype=ms.float16)
|
||||
compile_net(net, x, y, bias)
|
||||
compile_net(net, x, y)
|
||||
|
||||
|
||||
def test_sum_as_loss_float32():
|
||||
|
@ -68,7 +67,7 @@ def test_sum_as_loss_float32():
|
|||
self.fc_nobias = P.MatMul(transpose_b=True).set_strategy(strategy0)
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy1)
|
||||
|
||||
def construct(self, x, y, bias):
|
||||
def construct(self, x, y):
|
||||
out = self.fc_nobias(x, y)
|
||||
out = self.reduce_sum(out, (0, 1))
|
||||
return out
|
||||
|
@ -81,8 +80,7 @@ def test_sum_as_loss_float32():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
bias = Tensor(np.ones([64]), dtype=ms.float32)
|
||||
compile_net(net, x, y, bias)
|
||||
compile_net(net, x, y)
|
||||
|
||||
|
||||
def test_sum_as_loss_int32():
|
||||
|
@ -92,7 +90,7 @@ def test_sum_as_loss_int32():
|
|||
self.fc_nobias = P.MatMul(transpose_b=True).set_strategy(strategy0)
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy1)
|
||||
|
||||
def construct(self, x, y, bias):
|
||||
def construct(self, x, y):
|
||||
out = self.fc_nobias(x, y)
|
||||
out = self.reduce_sum(out, (0, 1))
|
||||
return out
|
||||
|
@ -105,5 +103,4 @@ def test_sum_as_loss_int32():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.int32)
|
||||
y = Tensor(np.ones([64, 32]), dtype=ms.int32)
|
||||
bias = Tensor(np.ones([64]), dtype=ms.int32)
|
||||
compile_net(net, x, y, bias)
|
||||
compile_net(net, x, y)
|
||||
|
|
|
@ -104,7 +104,11 @@ def test_onehot_batch_parallel_invalid_strategy():
|
|||
strategy4 = ((16, 1), (16, 1))
|
||||
try:
|
||||
compile_graph(strategy1, strategy2, strategy3, strategy4)
|
||||
except BaseException:
|
||||
except ValueError:
|
||||
pass
|
||||
except TypeError:
|
||||
pass
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
|
@ -144,7 +148,11 @@ def test_onehot_batch_parallel_invalid_strategy_axis0():
|
|||
strategy4 = ((16, 1), (16, 1))
|
||||
try:
|
||||
compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0)
|
||||
except BaseException:
|
||||
except ValueError:
|
||||
pass
|
||||
except TypeError:
|
||||
pass
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
|
|
|
@ -24,6 +24,17 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
class NetWithLossNoBias(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLossNoBias, self).__init__()
|
||||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
predict = self.network(x, y)
|
||||
return self.loss(predict)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -35,6 +46,15 @@ class NetWithLoss(nn.Cell):
|
|||
return self.loss(predict)
|
||||
|
||||
|
||||
class GradWrapNoBias(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrapNoBias, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
|
@ -44,6 +64,11 @@ class GradWrap(nn.Cell):
|
|||
return C.grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def compile_net_no_bias(net, x, y):
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
@ -165,7 +190,7 @@ def test_sum_mul5():
|
|||
self.mul1 = P.Mul().set_strategy(strategy1)
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=True).set_strategy(strategy2)
|
||||
|
||||
def construct(self, x, y, b):
|
||||
def construct(self, x, y):
|
||||
out = self.mul1(x, y)
|
||||
out = self.reduce_sum(out, 0)
|
||||
return out
|
||||
|
@ -173,13 +198,12 @@ def test_sum_mul5():
|
|||
context.set_auto_parallel_context(device_num=64, global_rank=0)
|
||||
strategy1 = ((1, 8, 8), (1, 8, 8))
|
||||
strategy2 = ((2, 4, 1),)
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
net = GradWrapNoBias(NetWithLossNoBias(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([1, 32, 64]), dtype=ms.float32)
|
||||
compile_net(net, x, y, b)
|
||||
compile_net_no_bias(net, x, y)
|
||||
|
||||
|
||||
def test_sum_mul6():
|
||||
|
@ -189,7 +213,7 @@ def test_sum_mul6():
|
|||
self.mul1 = P.Mul().set_strategy(strategy1)
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=True).set_strategy(strategy2)
|
||||
|
||||
def construct(self, x, y, b):
|
||||
def construct(self, x, y):
|
||||
out = self.mul1(x, y)
|
||||
out = self.reduce_sum(out, 1)
|
||||
return out
|
||||
|
@ -197,13 +221,12 @@ def test_sum_mul6():
|
|||
context.set_auto_parallel_context(device_num=64, global_rank=0)
|
||||
strategy1 = ((1, 8, 8), (1, 8, 8))
|
||||
strategy2 = ((2, 1, 4),)
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
net = GradWrapNoBias(NetWithLossNoBias(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([128, 1, 64]), dtype=ms.float32)
|
||||
compile_net(net, x, y, b)
|
||||
compile_net_no_bias(net, x, y)
|
||||
|
||||
|
||||
def test_sum_mul7():
|
||||
|
@ -213,7 +236,7 @@ def test_sum_mul7():
|
|||
self.mul1 = P.Mul().set_strategy(strategy1)
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=True).set_strategy(strategy2)
|
||||
|
||||
def construct(self, x, y, b):
|
||||
def construct(self, x, y):
|
||||
out = self.mul1(x, y)
|
||||
out = self.reduce_sum(out, (0, 1))
|
||||
return out
|
||||
|
@ -221,13 +244,12 @@ def test_sum_mul7():
|
|||
context.set_auto_parallel_context(device_num=64, global_rank=0)
|
||||
strategy1 = ((1, 8, 8), (1, 8, 8))
|
||||
strategy2 = ((2, 4, 1),)
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
net = GradWrapNoBias(NetWithLossNoBias(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
|
||||
compile_net(net, x, y, b)
|
||||
compile_net_no_bias(net, x, y)
|
||||
|
||||
|
||||
def test_max_mul():
|
||||
|
@ -347,6 +369,12 @@ def gen_inputs_and_compile_net(net):
|
|||
compile_net(net, x, y, b)
|
||||
|
||||
|
||||
def gen_inputs_and_compile_net_no_bias(net):
|
||||
x = Tensor(np.ones([128, 64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([128, 64, 64]), dtype=ms.float32)
|
||||
compile_net_no_bias(net, x, y)
|
||||
|
||||
|
||||
def tobefixed_test_arg_max_with_value_mul_semi_axis_parallel():
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 4, 2), (1, 4, 2))
|
||||
|
@ -414,7 +442,7 @@ class ArgMinWithValueNet2(nn.Cell):
|
|||
self.arg_min_with_value = P.ArgMinWithValue(keep_dims=True, axis=-1).set_strategy(strategy2)
|
||||
self.relu = P.ReLU().set_strategy(strategy3)
|
||||
|
||||
def construct(self, x, y, b):
|
||||
def construct(self, x, y):
|
||||
out = self.mul1(x, y)
|
||||
_, out = self.arg_min_with_value(out)
|
||||
out = self.relu(out)
|
||||
|
@ -426,9 +454,9 @@ def tobefixed_test_arg_min_with_value_mul_semi_axis_parallel2():
|
|||
strategy1 = ((1, 4, 2), (1, 4, 2))
|
||||
strategy2 = ((4, 1, 2),)
|
||||
strategy3 = ((2, 4, 1),)
|
||||
net = GradWrap(NetWithLoss(ArgMinWithValueNet2(strategy1, strategy2, strategy3)))
|
||||
net = GradWrapNoBias(NetWithLossNoBias(ArgMinWithValueNet2(strategy1, strategy2, strategy3)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
gen_inputs_and_compile_net(net)
|
||||
gen_inputs_and_compile_net_no_bias(net)
|
||||
|
||||
|
||||
def test_arg_min_with_value_mul_semi2():
|
||||
|
@ -436,9 +464,9 @@ def test_arg_min_with_value_mul_semi2():
|
|||
strategy1 = ((1, 4, 2), (1, 4, 2))
|
||||
strategy2 = ((4, 1, 1),)
|
||||
strategy3 = ((2, 4, 1),)
|
||||
net = GradWrap(NetWithLoss(ArgMinWithValueNet2(strategy1, strategy2, strategy3)))
|
||||
net = GradWrapNoBias(NetWithLossNoBias(ArgMinWithValueNet2(strategy1, strategy2, strategy3)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
gen_inputs_and_compile_net(net)
|
||||
gen_inputs_and_compile_net_no_bias(net)
|
||||
|
||||
|
||||
def test_arg_min_with_value_mul_auto2():
|
||||
|
@ -446,9 +474,9 @@ def test_arg_min_with_value_mul_auto2():
|
|||
strategy1 = None
|
||||
strategy2 = None
|
||||
strategy3 = None
|
||||
net = GradWrap(NetWithLoss(ArgMinWithValueNet2(strategy1, strategy2, strategy3)))
|
||||
net = GradWrapNoBias(NetWithLossNoBias(ArgMinWithValueNet2(strategy1, strategy2, strategy3)))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
gen_inputs_and_compile_net(net)
|
||||
gen_inputs_and_compile_net_no_bias(net)
|
||||
|
||||
|
||||
def test_cross_batch():
|
||||
|
@ -459,7 +487,7 @@ def test_cross_batch():
|
|||
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy2)
|
||||
self.reduce_mean = P.ReduceMean(keep_dims=False).set_strategy(strategy3).add_prim_attr("cross_batch", True)
|
||||
|
||||
def construct(self, x, y, b):
|
||||
def construct(self, x, y):
|
||||
out = self.mul1(x, y)
|
||||
out = self.reduce_sum(out, -1)
|
||||
out = self.reduce_mean(out, 0)
|
||||
|
@ -469,13 +497,12 @@ def test_cross_batch():
|
|||
strategy1 = ((4, 2), (4, 2))
|
||||
strategy2 = ((2, 1),)
|
||||
strategy3 = ((8,),)
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
|
||||
net = GradWrapNoBias(NetWithLossNoBias(Net(strategy1, strategy2, strategy3)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
compile_net(net, x, y, b)
|
||||
compile_net_no_bias(net, x, y)
|
||||
|
||||
|
||||
def test_cross_batch2():
|
||||
|
@ -486,7 +513,7 @@ def test_cross_batch2():
|
|||
self.reduce_mean = P.ReduceMean(keep_dims=False).set_strategy(strategy2)
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy3).add_prim_attr("cross_batch", True)
|
||||
|
||||
def construct(self, x, y, b):
|
||||
def construct(self, x, y):
|
||||
out = self.mul1(x, y)
|
||||
out = self.reduce_mean(out, -1)
|
||||
out = self.reduce_sum(out, 0)
|
||||
|
@ -496,13 +523,12 @@ def test_cross_batch2():
|
|||
strategy1 = ((4, 2), (4, 2))
|
||||
strategy2 = ((2, 1),)
|
||||
strategy3 = ((8,),)
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
|
||||
net = GradWrapNoBias(NetWithLossNoBias(Net(strategy1, strategy2, strategy3)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
compile_net(net, x, y, b)
|
||||
compile_net_no_bias(net, x, y)
|
||||
|
||||
|
||||
def test_cross_batch_auto():
|
||||
|
@ -513,20 +539,19 @@ def test_cross_batch_auto():
|
|||
self.reduce_mean = P.ReduceMean(keep_dims=False)
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False).add_prim_attr("cross_batch", True)
|
||||
|
||||
def construct(self, x, y, b):
|
||||
def construct(self, x, y):
|
||||
out = self.mul1(x, y)
|
||||
out = self.reduce_mean(out, -1)
|
||||
out = self.reduce_sum(out, 0)
|
||||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
net = GradWrapNoBias(NetWithLossNoBias(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
compile_net(net, x, y, b)
|
||||
compile_net_no_bias(net, x, y)
|
||||
|
||||
|
||||
def test_max_empty_tuple():
|
||||
|
|
|
@ -114,7 +114,11 @@ def test_reshape1_strategy_1():
|
|||
strategy_loss = ((8, 1), (8, 1))
|
||||
try:
|
||||
reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss)
|
||||
except BaseException:
|
||||
except ValueError:
|
||||
pass
|
||||
except TypeError:
|
||||
pass
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
|
@ -125,7 +129,11 @@ def test_reshape1_strategy_2():
|
|||
strategy_loss = ((8, 1), (8, 1))
|
||||
try:
|
||||
reshape_common(ParallelMode.AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss)
|
||||
except BaseException:
|
||||
except ValueError:
|
||||
pass
|
||||
except TypeError:
|
||||
pass
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
|
@ -347,14 +355,22 @@ def test_reshape_net3_2():
|
|||
def test_reshape_net4_1():
|
||||
try:
|
||||
reshape_net2(ReshapeNet4(((1, 8), (8, 1))))
|
||||
except BaseException:
|
||||
except ValueError:
|
||||
pass
|
||||
except TypeError:
|
||||
pass
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
def test_reshape_net4_2():
|
||||
try:
|
||||
reshape_net2(ReshapeNet4(((1, 8), (8, 2))))
|
||||
except BaseException:
|
||||
except ValueError:
|
||||
pass
|
||||
except TypeError:
|
||||
pass
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
|
|
|
@ -29,8 +29,8 @@ class GradWrap(nn.Cell):
|
|||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y, bias):
|
||||
return C.grad_all(self.network)(x, y, bias)
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
def test_sum_as_loss():
|
||||
|
@ -41,7 +41,7 @@ def test_sum_as_loss():
|
|||
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy1)
|
||||
self.mul = P.Mul().set_strategy(strategy=((), ()))
|
||||
|
||||
def construct(self, x, y, bias):
|
||||
def construct(self, x, y):
|
||||
out = self.fc_nobias(x, y)
|
||||
out = self.reduce_sum(out, (0, 1))
|
||||
out = self.mul(out, F.scalar_to_array(2.0))
|
||||
|
@ -57,5 +57,4 @@ def test_sum_as_loss():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
bias = Tensor(np.ones([64]), dtype=ms.float32)
|
||||
_executor.compile(net, x, y, bias)
|
||||
_executor.compile(net, x, y)
|
||||
|
|
|
@ -52,11 +52,21 @@ class GradWrap3(nn.Cell):
|
|||
def construct(self, x, y, bias):
|
||||
return C.grad_all(self.network)(x, y, bias)
|
||||
|
||||
class GradWrap4(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap4, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
def compile_net_no_bias(net, x, y):
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
def test_no_grad():
|
||||
class Net(nn.Cell):
|
||||
|
@ -144,7 +154,7 @@ def test_grad_sens_scalar_broadcast():
|
|||
self.fc_nobias = P.MatMul(transpose_b=True).set_strategy(strategy0)
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy1)
|
||||
|
||||
def construct(self, x, y, bias):
|
||||
def construct(self, x, y):
|
||||
out = self.fc_nobias(x, y)
|
||||
out = self.reduce_sum(out, (0, 1))
|
||||
return out
|
||||
|
@ -152,10 +162,9 @@ def test_grad_sens_scalar_broadcast():
|
|||
context.set_auto_parallel_context(device_num=16, global_rank=0)
|
||||
strategy0 = ((4, 1), (4, 1))
|
||||
strategy1 = ((4, 1),)
|
||||
net = GradWrap3(Net(strategy0, strategy1))
|
||||
net = GradWrap4(Net(strategy0, strategy1))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
bias = Tensor(np.ones([64]), dtype=ms.float32)
|
||||
compile_net(net, x, y, bias)
|
||||
compile_net_no_bias(net, x, y)
|
||||
|
|
|
@ -28,13 +28,13 @@ class GradWrap(nn.Cell):
|
|||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y, bias):
|
||||
return C.grad_all(self.network)(x, y, bias)
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
def compile_net(net, x, y, bias):
|
||||
def compile_net(net, x, y):
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x, y, bias)
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
def test_sum_as_loss():
|
||||
|
@ -44,7 +44,7 @@ def test_sum_as_loss():
|
|||
self.fc_nobias = P.MatMul(transpose_b=True).set_strategy(strategy0)
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy1)
|
||||
|
||||
def construct(self, x, y, bias):
|
||||
def construct(self, x, y):
|
||||
out = self.fc_nobias(x, y)
|
||||
out = self.reduce_sum(out, (0, 1))
|
||||
return out
|
||||
|
@ -57,8 +57,7 @@ def test_sum_as_loss():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
bias = Tensor(np.ones([64]), dtype=ms.float32)
|
||||
compile_net(net, x, y, bias)
|
||||
compile_net(net, x, y)
|
||||
|
||||
|
||||
def test_sum_as_loss2():
|
||||
|
@ -68,7 +67,7 @@ def test_sum_as_loss2():
|
|||
self.fc_nobias = P.MatMul(transpose_b=True).set_strategy(strategy0)
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy1)
|
||||
|
||||
def construct(self, x, y, bias):
|
||||
def construct(self, x, y):
|
||||
out = self.fc_nobias(x, y)
|
||||
out = self.reduce_sum(out, (0, 1))
|
||||
return out
|
||||
|
@ -81,5 +80,4 @@ def test_sum_as_loss2():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
bias = Tensor(np.ones([64]), dtype=ms.float32)
|
||||
compile_net(net, x, y, bias)
|
||||
compile_net(net, x, y)
|
||||
|
|
Loading…
Reference in New Issue