更新readme

This commit is contained in:
Boyka_Occam 2021-08-25 15:14:25 +08:00
parent b6d43e318e
commit 05500639f4
1 changed files with 9 additions and 3 deletions

View File

@ -237,12 +237,16 @@ Resnet50 is easy to get in mindspore model zoo.
For Ascend device, standalone training example(1p) by shell script
```bash
sh run_standalone_train.sh dataset/coco2017 cspdarknet53_backbone.ckpt
sh run_standalone_train.sh dataset/coco2017 train2017 annotations/instances_train2017.json val2017 annotations/instances_val2017.json
```
```text
python train.py \
--data_dir=/dataset/xxx \
--train_img_dir=train2017 \
--train_json_file=annotations/instances_train2017.json \
--val_img_dir=val2017 \
--val_json_file=annotations/instances_val2017.json \
--pretrained_backbone=cspdarknet53_backbone.ckpt \
--is_distributed=0 \
--lr=0.1 \
@ -262,7 +266,7 @@ After training, you'll get some checkpoint files under the outputs folder by def
For Ascend device, distributed training example(8p) by shell script
```bash
sh run_distribute_train.sh dataset/coco2017 cspdarknet53_backbone.ckpt rank_table_8p.json
sh run_distribute_train.sh dataset/coco2017 train2017 annotations/instances_train2017.json val2017 annotations/instances_val2017.json rank_table_8p.json
```
The above shell script will run distribute training in the background.
@ -283,10 +287,12 @@ You can train your own model based on either pretrained classification model or
```bash
python eval.py \
--data_dir=./dataset/coco2017 \
--val_img_dir=val2017 \
--val_json_file=annotations/instances_val2017.json \
--pretrained=yolov4.ckpt \
--testing_shape=608 > log.txt 2>&1 &
OR
sh run_eval.sh dataset/coco2017 checkpoint/yolov4.ckpt
sh run_eval.sh dataset/coco2017 val2017 annotations/instances_val2017.json checkpoint/yolov4.ckpt
```
The above python command will run in the background. You can view the results through the file "log.txt".