mindspore/tests/ut/python/exec/test_train.py

180 lines
6.1 KiB
Python
Raw Normal View History

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test model train """
import numpy as np
2020-05-13 11:30:27 +08:00
import mindspore.nn as nn
from mindspore import Tensor, Parameter, Model
2020-05-13 11:30:27 +08:00
from mindspore.common.initializer import initializer
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.optim import Momentum
2020-05-13 11:30:27 +08:00
from mindspore.ops import operations as P
# fn is a funcation use i as input
def lr_gen(fn, epoch_size):
for i in range(epoch_size):
yield fn(i)
2020-05-13 11:30:27 +08:00
def me_train_tensor(net, input_np, label_np, epoch_size=2):
"""me_train_tensor"""
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
2020-05-13 11:30:27 +08:00
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr_gen(lambda i: 0.1, epoch_size), 0.9,
0.01, 1024)
Model(net, loss, opt)
_network = nn.WithLossCell(net, loss)
_train_net = nn.TrainOneStepCell(_network, opt)
_train_net.set_train()
label_np = np.argmax(label_np, axis=-1).astype(np.int32)
for epoch in range(0, epoch_size):
2020-05-13 11:30:27 +08:00
print(f"epoch %d" % (epoch))
_train_net(Tensor(input_np), Tensor(label_np))
def test_bias_add(test_with_simu):
"""test_bias_add"""
import mindspore.context as context
is_pynative_mode = (context.get_context("mode") == context.PYNATIVE_MODE)
# training api is implemented under Graph mode
if is_pynative_mode:
context.set_context(mode=context.GRAPH_MODE)
if test_with_simu:
return
class Net(nn.Cell):
"""Net definition"""
2020-05-13 11:30:27 +08:00
def __init__(self,
output_channels,
bias_init='zeros',
):
super(Net, self).__init__()
self.biasAdd = P.BiasAdd()
if isinstance(bias_init, Tensor):
if bias_init.dim() != 1 or bias_init.shape[0] != output_channels:
raise ValueError("bias_init shape error")
self.bias = Parameter(initializer(
bias_init, [output_channels]), name="bias")
def construct(self, input_x):
return self.biasAdd(input_x, self.bias)
bias_init = Tensor(np.ones([3]).astype(np.float32))
input_np = np.ones([1, 3, 3, 3], np.float32)
label_np = np.ones([1, 3, 3, 3], np.int32) * 2
me_train_tensor(Net(3, bias_init=bias_init), input_np, label_np)
def test_conv(test_with_simu):
"""test_conv"""
import mindspore.context as context
is_pynative_mode = (context.get_context("mode") == context.PYNATIVE_MODE)
# training api is implemented under Graph mode
if is_pynative_mode:
context.set_context(mode=context.GRAPH_MODE)
if test_with_simu:
return
class Net(nn.Cell):
"Net definition"""
2020-05-13 11:30:27 +08:00
def __init__(self,
cin,
cout,
kernel_size):
super(Net, self).__init__()
Tensor(np.ones([6, 3, 3, 3]).astype(np.float32) * 0.01)
self.conv = nn.Conv2d(cin,
cout,
kernel_size)
def construct(self, input_x):
return self.conv(input_x)
net = Net(3, 6, (3, 3))
input_np = np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01
label_np = np.ones([1, 6, 32, 32]).astype(np.int32)
me_train_tensor(net, input_np, label_np)
def test_net():
"""test_net"""
import mindspore.context as context
is_pynative_mode = (context.get_context("mode") == context.PYNATIVE_MODE)
# training api is implemented under Graph mode
if is_pynative_mode:
context.set_context(mode=context.GRAPH_MODE)
class Net(nn.Cell):
"""Net definition"""
2020-05-13 11:30:27 +08:00
def __init__(self):
super(Net, self).__init__()
Tensor(np.ones([64, 3, 7, 7]).astype(np.float32) * 0.01)
self.conv = nn.Conv2d(3, 64, (7, 7), pad_mode="same", stride=2)
self.relu = nn.ReLU()
self.bn = nn.BatchNorm2d(64)
self.mean = P.ReduceMean(keep_dims=True)
self.flatten = nn.Flatten()
self.dense = nn.Dense(64, 12)
def construct(self, input_x):
output = input_x
output = self.conv(output)
output = self.bn(output)
output = self.relu(output)
output = self.mean(output, (-2, -1))
output = self.flatten(output)
output = self.dense(output)
return output
net = Net()
input_np = np.ones([32, 3, 224, 224]).astype(np.float32) * 0.01
label_np = np.ones([32, 12]).astype(np.int32)
me_train_tensor(net, input_np, label_np)
2020-05-13 11:30:27 +08:00
def test_bn():
"""test_bn"""
import mindspore.context as context
is_pynative_mode = (context.get_context("mode") == context.PYNATIVE_MODE)
# training api is implemented under Graph mode
if is_pynative_mode:
context.set_context(mode=context.GRAPH_MODE)
class Net(nn.Cell):
"""Net definition"""
2020-05-13 11:30:27 +08:00
def __init__(self, cin, cout):
super(Net, self).__init__()
self.bn = nn.BatchNorm2d(cin)
self.flatten = nn.Flatten()
self.dense = nn.Dense(cin, cout)
def construct(self, input_x):
output = input_x
output = self.bn(output)
output = self.flatten(output)
output = self.dense(output)
return output
net = Net(2048, 16)
input_np = np.ones([32, 2048, 1, 1]).astype(np.float32) * 0.01
label_np = np.ones([32, 16]).astype(np.int32)
me_train_tensor(net, input_np, label_np)