forked from mindspore-Ecosystem/mindspore
139 lines
4.6 KiB
Python
139 lines
4.6 KiB
Python
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
"""
|
||
|
train step wrap
|
||
|
"""
|
||
|
import mindspore.nn as nn
|
||
|
from mindspore.ops import functional as F
|
||
|
from mindspore.ops import composite as C
|
||
|
from mindspore.ops import operations as P
|
||
|
from mindspore import Parameter, ParameterTuple
|
||
|
|
||
|
|
||
|
run_opt = C.MultitypeFuncGraph("run_opt")
|
||
|
|
||
|
# pylint: disable=unused-argument
|
||
|
@run_opt.register("Function", "Int", "Number", "Number",
|
||
|
"Tensor", "Tensor", "Tensor")
|
||
|
def tensor_run_opt(opt, iterator, learning_rate, momentum,
|
||
|
gradient, variable, moment):
|
||
|
success = True
|
||
|
new_weight = opt(gradient, moment, variable, learning_rate, momentum)
|
||
|
success = F.depend(success, P.Assign()(variable, new_weight))
|
||
|
return success
|
||
|
|
||
|
|
||
|
class OptimizerByMomentum(nn.Cell):
|
||
|
"""
|
||
|
OptimizerByMomentum definition
|
||
|
"""
|
||
|
# list of tensor
|
||
|
def __init__(self, weights):
|
||
|
super(OptimizerByMomentum, self).__init__()
|
||
|
self.learning_rate = Parameter(0.1, name="learning_rate")
|
||
|
self.momentum = Parameter(0.05, name="momentum")
|
||
|
self.iter = Parameter(0, name="iter")
|
||
|
|
||
|
self.weights = weights
|
||
|
self.moments = weights.clone(prefix="moments", init='zeros')
|
||
|
|
||
|
self.hyper_map = C.HyperMap()
|
||
|
self.opt = P.ApplyMomentum()
|
||
|
|
||
|
def construct(self, grads):
|
||
|
success = True
|
||
|
weights = self.weights
|
||
|
moments = self.moments
|
||
|
success = self.hyper_map(
|
||
|
F.partial(run_opt, self.opt, self.iter,
|
||
|
self.learning_rate, self.momentum), grads, weights, moments)
|
||
|
# self.learning_rate = updata_lr(self.learning_rate, self.momentum)
|
||
|
return success
|
||
|
|
||
|
class TrainStepWrap(nn.Cell):
|
||
|
"""
|
||
|
TrainStepWrap definition
|
||
|
"""
|
||
|
def __init__(self, network):
|
||
|
super(TrainStepWrap, self).__init__()
|
||
|
self.network = network
|
||
|
self.network.set_train()
|
||
|
self.weights = ParameterTuple(network.trainable_params())
|
||
|
self.optimizer = OptimizerByMomentum(self.weights)
|
||
|
self.hyper_map = C.HyperMap()
|
||
|
self.grad = C.GradOperation('grad', get_by_list=True)
|
||
|
|
||
|
def construct(self, x, label):
|
||
|
weights = self.weights
|
||
|
grads = self.grad(self.network, weights)(x, label)
|
||
|
return self.optimizer(grads)
|
||
|
|
||
|
class NetWithLossClass(nn.Cell):
|
||
|
"""
|
||
|
NetWithLossClass definition
|
||
|
"""
|
||
|
def __init__(self, network):
|
||
|
super(NetWithLossClass, self).__init__(auto_prefix=False)
|
||
|
self.loss = nn.SoftmaxCrossEntropyWithLogits()
|
||
|
self.network = network
|
||
|
|
||
|
def construct(self, x, label):
|
||
|
predict = self.network(x)
|
||
|
return self.loss(predict, label)
|
||
|
|
||
|
|
||
|
def train_step_with_loss_warp(network):
|
||
|
return TrainStepWrap(NetWithLossClass(network))
|
||
|
|
||
|
|
||
|
class TrainStepWrap2(nn.Cell):
|
||
|
"""
|
||
|
TrainStepWrap2 definition
|
||
|
"""
|
||
|
def __init__(self, network, sens):
|
||
|
super(TrainStepWrap2, self).__init__()
|
||
|
self.network = network
|
||
|
self.network.set_train()
|
||
|
self.weights = ParameterTuple(network.get_parameters())
|
||
|
self.optimizer = OptimizerByMomentum(self.weights)
|
||
|
self.hyper_map = C.HyperMap()
|
||
|
self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
|
||
|
self.sens = sens
|
||
|
|
||
|
def construct(self, x):
|
||
|
weights = self.weights
|
||
|
grads = self.grad(self.network, weights)(x, self.sens)
|
||
|
return self.optimizer(grads)
|
||
|
|
||
|
def train_step_with_sens(network, sens):
|
||
|
return TrainStepWrap2(network, sens)
|
||
|
|
||
|
class TrainStepWrapWithoutOpt(nn.Cell):
|
||
|
"""
|
||
|
TrainStepWrapWithoutOpt definition
|
||
|
"""
|
||
|
def __init__(self, network):
|
||
|
super(TrainStepWrapWithoutOpt, self).__init__()
|
||
|
self.network = network
|
||
|
self.weights = ParameterTuple(network.trainable_params())
|
||
|
self.grad = C.GradOperation('grad', get_by_list=True)
|
||
|
|
||
|
def construct(self, x, label):
|
||
|
grads = self.grad(self.network, self.weights)(x, label)
|
||
|
return grads
|
||
|
|
||
|
def train_step_without_opt(network):
|
||
|
return TrainStepWrapWithoutOpt(NetWithLossClass(network))
|