Massive redesign so that: scala> "hi" == "hi".reverse.reverse gives: res0: Boolean = true

Preparing to do similar things to arrays.

git-svn-id: http://lampsvn.epfl.ch/svn-repos/scala/scala/trunk@18685 5e8d7ff9-d8ef-0310-90f0-a4852d11357a
This commit is contained in:
odersky 2009-09-10 15:39:11 +00:00
parent ceb066c672
commit 4151ad80e8
78 changed files with 3228 additions and 2386 deletions

View File

@ -258,6 +258,7 @@ LOCAL REFERENCE BUILD (LOCKER)
srcdir="${src.dir}/library"
jvmargs="${scalacfork.jvmargs}">
<include name="scala/Predef.scala"/>
<include name="scala/LowPriorityImplicits.scala"/>
<compilationpath>
<pathelement location="${build-locker.dir}/classes/library"/>
</compilationpath>
@ -271,6 +272,7 @@ LOCAL REFERENCE BUILD (LOCKER)
jvmargs="${scalacfork.jvmargs}">
<include name="**/*.scala"/>
<exclude name="scala/Predef.scala"/>
<exclude name="scala/LowPriorityImplicits.scala"/>
<compilationpath>
<pathelement location="${build-locker.dir}/classes/library"/>
</compilationpath>
@ -439,6 +441,7 @@ QUICK BUILD (QUICK)
srcdir="${src.dir}/library"
jvmargs="${scalacfork.jvmargs}">
<include name="scala/Predef.scala"/>
<include name="scala/LowPriorityImplicits.scala"/>
<compilationpath>
<pathelement location="${build-quick.dir}/classes/library"/>
</compilationpath>
@ -452,6 +455,7 @@ QUICK BUILD (QUICK)
jvmargs="${scalacfork.jvmargs}">
<include name="**/*.scala"/>
<exclude name="scala/Predef.scala"/>
<exclude name="scala/LowPriorityImplicits.scala"/>
<compilationpath>
<pathelement location="${build-quick.dir}/classes/library"/>
</compilationpath>
@ -896,6 +900,7 @@ BOOTSTRAPPING BUILD (STRAP)
target="jvm-1.5"
addparams="${scalac.args.all}">
<include name="scala/Predef.scala"/>
<include name="scala/LowPriorityImplicits.scala"/>
</scalac>
<scalac
srcdir="${src.dir}/library"
@ -905,6 +910,7 @@ BOOTSTRAPPING BUILD (STRAP)
addparams="${scalac.args.all}">
<include name="**/*.scala"/>
<exclude name="scala/Predef.scala"/>
<exclude name="scala/LowPriorityImplicits.scala"/>
</scalac>
<scalac
srcdir="${src.dir}/actors"

View File

@ -121,7 +121,7 @@ trait TreeDSL {
/** Methods for sequences **/
def DROP(count: Int): Tree =
if (count == 0) target
else (target DOT nme.drop)(LIT(count)) DOT nme.toSeq
else (target DOT nme.drop)(LIT(count)) DOT nme.toSequence
/** Casting & type tests -- working our way toward understanding exactly
* what differs between the different forms of IS and AS.

View File

@ -59,6 +59,7 @@ abstract class SymbolicXMLBuilder(p: Parsers#Parser, preserveWS: Boolean)
private def LL[A](x: A*): List[List[A]] = List(List(x:_*))
private def const(x: Any) = x match {
case s: runtime.RichString => Literal(Constant(s.toString)) // not our finest hour
case s: collection.immutable.StringLike[_] => Literal(Constant(s.toString)) // not our finest hour
case _ => Literal(Constant(x))
}
private def wild = Ident(nme.WILDCARD)

View File

@ -328,7 +328,7 @@ trait StdNames {
val tail = newTermName("tail")
val toArray = newTermName("toArray")
val toList = newTermName("toList")
val toSeq = newTermName("toSeq")
val toSequence = newTermName("toSequence")
val toString_ = newTermName("toString")
val clone_ = newTermName("clone")
val this_ = newTermName("this")

View File

@ -373,67 +373,57 @@ abstract class UnCurry extends InfoTransform with TypingTransformers {
}
def transformArgs(pos: Position, args: List[Tree], formals: List[Type], isJava: Boolean) = {
if (formals.isEmpty) {
assert(args.isEmpty); List()
} else {
val args1 =
formals.last match {
case TypeRef(pre, sym, List(elempt)) if (sym == RepeatedParamClass) =>
def mkArrayValue(ts: List[Tree]) =
atPos(pos)(ArrayValue(TypeTree(elempt), ts) setType formals.last);
// when calling into java varargs, make sure it's an array - see bug #1360
def forceToArray(arg: Tree) = {
val Typed(tree, _) = arg
if (!isJava || tree.tpe.typeSymbol == ArrayClass) tree
else {
val traversableTpe = tree.tpe.baseType(TraversableClass)
val toArray = tree.tpe member nme.toArray
if (traversableTpe != NoType && toArray != NoSymbol) {
val arguments =
if (toArray.tpe.paramTypes.isEmpty) List() // !!! old style toArray
else { // new style, with manifest
val manifestOpt = localTyper.findManifest(tree.tpe.typeArgs.head, false)
if (manifestOpt.tree.isEmpty) {
unit.error(tree.pos, "cannot find class manifest for element type of "+tree.tpe)
List(Literal(Constant(null)))
} else {
List(manifestOpt.tree)
}
}
atPhase(phase.next) {
localTyper.typed {
atPos(pos) {
Apply(gen.mkAttributedSelect(tree, toArray), arguments)
}
}
}
} else tree
}
val args1 = formals.lastOption match {
case Some(TypeRef(pre, sym, List(elempt))) if (sym == RepeatedParamClass) =>
def callMethod(tree: Tree, nme: Name): Tree = {
val sym = tree.tpe member nme
assert(sym != NoSymbol)
val arguments =
if (sym.tpe.paramTypes.isEmpty) List() // !!! no manifest required
else List(localTyper.getManifestTree(tree.pos, tree.tpe.typeArgs.head, false)) // call with manifest
atPhase(phase.next) {
localTyper.typedPos(pos) {
Apply(gen.mkAttributedSelect(tree, sym), arguments)
}
if (args.isEmpty)
List(mkArrayValue(args))
else {
val suffix: Tree =
if (treeInfo isWildcardStarArg args.last) forceToArray(args.last)
else mkArrayValue(args drop (formals.length - 1))
args.take(formals.length - 1) ::: List(suffix)
}
case _ => args
}
}
def mkArrayValue(ts: List[Tree]) = {
val arr = ArrayValue(TypeTree(elempt), ts) setType formals.last
if (isJava || inPattern) arr
else callMethod(arr, nme.toSequence) // println("need to callMethod("+arr+", nme.toSequence)"); arr }
}
List.map2(formals, args1) { (formal, arg) =>
if (formal.typeSymbol != ByNameParamClass) {
arg
} else if (isByNameRef(arg)) {
byNameArgs.addEntry(arg)
arg setType functionType(List(), arg.tpe)
} else {
val fun = localTyper.typed(
Function(List(), arg) setPos arg.pos).asInstanceOf[Function];
new ChangeOwnerTraverser(currentOwner, fun.symbol).traverse(arg);
transformFunction(fun)
// when calling into java varargs, make sure it's an array - see bug #1360
def forceToArray(arg: Tree) = {
val Typed(tree, _) = arg
if (isJava && tree.tpe.typeSymbol != ArrayClass &&
(tree.tpe.typeSymbol isSubClass TraversableClass)) callMethod(tree, nme.toArray)
else tree
}
if (args.isEmpty)
List(mkArrayValue(args))
else {
val suffix: Tree =
if (treeInfo isWildcardStarArg args.last) forceToArray(args.last)
else mkArrayValue(args drop (formals.length - 1))
args.take(formals.length - 1) ::: List(suffix)
}
case _ =>
args
}
List.map2(formals, args1) { (formal, arg) =>
if (formal.typeSymbol != ByNameParamClass) {
arg
} else if (isByNameRef(arg)) {
byNameArgs.addEntry(arg)
arg setType functionType(List(), arg.tpe)
} else {
val fun = localTyper.typed(
Function(List(), arg) setPos arg.pos).asInstanceOf[Function];
new ChangeOwnerTraverser(currentOwner, fun.symbol).traverse(arg);
transformFunction(fun)
}
}
}

View File

@ -220,7 +220,7 @@ object Console {
* target="contentFrame">Console.printf</a>.
*/
@deprecated("For console output, use <code>Console.printf</code>. For <code>String</code>\n"+
"formatting, <code>RichString</code>'s <code>format</code> method.")
"formatting, <code>StringOps</code>'s <code>format</code> method.")
def format(text: String, args: Any*) {
if (text eq null) out.printf("null")
else out.print(text format (args : _*))

View File

@ -0,0 +1,26 @@
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2002-2009, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
// $Id: Equals.scala 18478 2009-08-13 21:30:20Z stepancheg $
package scala
/** An interface containing operations for equality
* The only method not already present in AnyRef is canEqual
*/
trait Equals {
/** A method that should be called from every well-designed equals method
* that is open to be overridden in a subclass. See Programming in Scala, Chapter 28
* for discussion and design.
*/
def canEqual(that: Any): Boolean
/** The equality method defined in AnyRef
*/
def equals(that: Any): Boolean
}

View File

@ -0,0 +1,50 @@
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2002-2009, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
// $Id: Predef.scala 18558 2009-08-24 14:03:30Z moors $
package scala
import collection.mutable._
import collection.immutable.WrappedString
/** The `LowPriorityImplicits` class provides implicit values that are
* valid in all Scala compilation units without explicit qualification, but that
* are partially overridden by higher-priority conmversions in Predef
*/
class LowPriorityImplicits {
implicit def genericArrayWrapper[T](xs: Array[T]): WrappedArray[T] = (xs: AnyRef) match { // !!! drop the AnyRef and get unreachable code errors!
case x: Array[AnyRef] => arrayWrapper[AnyRef](x).asInstanceOf[WrappedArray[T]]
case x: Array[Int] => arrayWrapper(x).asInstanceOf[WrappedArray[T]]
case x: Array[Double] => arrayWrapper(x).asInstanceOf[WrappedArray[T]]
case x: Array[Long] => arrayWrapper(x).asInstanceOf[WrappedArray[T]]
case x: Array[Float] => arrayWrapper(x).asInstanceOf[WrappedArray[T]]
case x: Array[Char] => arrayWrapper(x).asInstanceOf[WrappedArray[T]]
case x: Array[Byte] => arrayWrapper(x).asInstanceOf[WrappedArray[T]]
case x: Array[Short] => arrayWrapper(x).asInstanceOf[WrappedArray[T]]
case x: Array[Boolean] => arrayWrapper(x).asInstanceOf[WrappedArray[T]]
case x: Array[Unit] => arrayWrapper(x).asInstanceOf[WrappedArray[T]]
}
implicit def arrayWrapper[T <: AnyRef](xs: Array[T]): WrappedRefArray[T] = new WrappedRefArray[T](xs.asInstanceOf[Array[AnyRef]])
implicit def arrayWrapper(xs: Array[Int]): WrappedIntArray = new WrappedIntArray(xs)
implicit def arrayWrapper(xs: Array[Double]): WrappedDoubleArray = new WrappedDoubleArray(xs)
implicit def arrayWrapper(xs: Array[Long]): WrappedLongArray = new WrappedLongArray(xs)
implicit def arrayWrapper(xs: Array[Float]): WrappedFloatArray = new WrappedFloatArray(xs)
implicit def arrayWrapper(xs: Array[Char]): WrappedCharArray = new WrappedCharArray(xs)
implicit def arrayWrapper(xs: Array[Byte]): WrappedByteArray = new WrappedByteArray(xs)
implicit def arrayWrapper(xs: Array[Short]): WrappedShortArray = new WrappedShortArray(xs)
implicit def arrayWrapper(xs: Array[Boolean]): WrappedBooleanArray = new WrappedBooleanArray(xs)
implicit def arrayWrapper(xs: Array[Unit]): WrappedUnitArray = new WrappedUnitArray(xs)
implicit def wrapString(s: String): WrappedString = new WrappedString(s)
implicit def unwrapString(ws: WrappedString): String = ws.self
}

View File

@ -11,11 +11,15 @@
package scala
import collection.immutable.StringOps
import collection.mutable.StringBuilder
import collection.generic.BuilderFactory
/** The <code>Predef</code> object provides definitions that are
* accessible in all Scala compilation units without explicit
* qualification.
*/
object Predef {
object Predef extends LowPriorityImplicits {
// classOf dummy ------------------------------------------------------
@ -63,7 +67,7 @@ object Predef {
private val P = scala.`package` // to force scala package object to be seen.
private val L = scala.collection.immutable.List // to force Nil, :: to be seen.
private val S = scala.collection.mutable.StringBuilder // to force StringBuilder to be seen.
private val S = StringBuilder // to force StringBuilder to be seen.
val $scope = scala.xml.TopScope
@ -177,7 +181,7 @@ object Predef {
def println() = Console.println()
def println(x: Any) = Console.println(x)
def printf(text: String, xs: Any*) = Console.printf(text, xs: _*)
def format(text: String, xs: Any*) = stringWrapper(text).format(xs: _*)
def format(text: String, xs: Any*) = augmentString(text).format(xs: _*)
def readLine(): String = Console.readLine()
def readLine(text: String, args: Any*) = Console.readLine(text, args)
@ -206,7 +210,10 @@ object Predef {
implicit def booleanWrapper(x: Boolean) = new runtime.RichBoolean(x)
implicit def stringWrapper(x: String) = new runtime.RichString(x)
implicit def augmentString(x: String): StringOps = new StringOps(x)
implicit def unaugmentString(x: StringOps): String = x.repr
implicit def stringBuilderFactory: BuilderFactory[Char, String, String] =
new BuilderFactory[Char, String, String] { def apply(from: String) = new StringBuilder }
implicit def any2stringadd(x: Any) = new runtime.StringAdd(x)
@ -252,8 +259,7 @@ object Predef {
/** any array projection can be automatically converted into an array */
//implicit def forceArrayProjection[A](x: Array.Projection[A]): Array[A] = x.force !!! re-enable?
/** any random access character seq (including rich string can be converted into a string */
implicit def richString2String(x: runtime.RichString): String = if (x eq null) null else x.toString
//implicit def lazyStreamToConsable[A](xs: => Stream[A]) = new runtime.StreamCons(xs)
implicit def seqToCharSequence(xs: collection.Vector[Char]): CharSequence = new CharSequence {

View File

@ -18,7 +18,7 @@ package scala
* @version 1.0
* @since 2.3
*/
trait Product extends AnyRef {
trait Product extends Equals {
/** for a product <code>A(x_1,...,x_k)</code>, returns <code>x_(n+1)</code>
* for <code>0 &lt;= n &lt; k</code>
@ -56,5 +56,5 @@ trait Product extends AnyRef {
* in the face of subtyping. For more, see
* http://www.artima.com/lejava/articles/equality.html
*/
def canEqual(other: Any) = true
override def canEqual(other: Any): Boolean = true
}

View File

@ -25,9 +25,6 @@ import Predef._
trait Proxy {
def self: Any
override def hashCode: Int = self.hashCode
override def equals(that: Any): Boolean = that match {
case that: Proxy => self equals that.self
case that => false
}
override def equals(that: Any): Boolean = that equals self
override def toString: String = self.toString
}

View File

@ -0,0 +1,402 @@
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2003-2009, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
// $Id: IterableLike.scala 18602 2009-08-29 00:54:16Z extempore $
package scala.collection
import generic._
import annotation.unchecked.uncheckedVariance
// import immutable.Stream // !!!
/** <p>
* A template trait for iterable collections.
* </p>
* <p>
* Collection classes mixing in this trait provide a method
* <code>iterator</code> which returns an iterator over all the
* elements contained in the collection. They also provide a method
* <code>newBuilder</code> which creates a builder for collections of the
* same kind.
* </p>
* <p>
* This trait implements <code>Iterable</code>'s <code>foreach</code>
* method by stepping through all elements. Subclasses of <code>Iterable</code>
* should re-implement <code>foreach</code> with something more efficient,
* if possible.
* </p>
* <p>
* This trait adds methods <code>iterator</code>, <code>sameElements</code>,
* <code>takeRight</code>, <code>dropRight</code> to the methods inherited
* from trait <a href="../Iterable.html" target="ContentFrame">
* <code>Iterable</code></a>.
* </p>
*
* @note This trait replaces every method that uses breaks in the original by an iterator version.
*
* @author Martin Odersky
* @version 2.8
*/
trait IterableLike[+A, +Repr] extends Equals with TraversableLike[A, Repr] {
self =>
override protected[this] def thisCollection: Iterable[A] = this.asInstanceOf[Iterable[A]]
override protected[this] def toCollection(repr: Repr): Iterable[A] = repr.asInstanceOf[Iterable[A]]
/** Creates a new iterator over all elements contained in this
* iterable object.
*
* @return the new iterator
*/
def iterator: Iterator[A]
@deprecated("use `iterator' instead")
def elements = iterator
/** Apply a function <code>f</code> to all elements of this
* iterable object.
*
* @param f A function that is applied for its side-effect to every element.
* The result (of arbitrary type U) of function `f` is discarded.
*
* @note This method underlies the implementation of most other bulk operations.
* Implementing `foreach` with `iterator` is often suboptimal.
* So `foreach` should be overridden in concrete collection classes if a more
* efficient implementation is available.
*/
def foreach[U](f: A => U): Unit = iterator.foreach(f)
/** Return true iff the given predicate `p` yields true for all elements
* of this iterable.
*
* @note May not terminate for infinite-sized collections.
* @param p the predicate
*/
override def forall(p: A => Boolean): Boolean = iterator.forall(p)
/** Return true iff there is an element in this iterable for which the
* given predicate `p` yields true.
*
* @note May not terminate for infinite-sized collections.
* @param p the predicate
*/
override def exists(p: A => Boolean): Boolean = iterator.exists(p)
/** Find and return the first element of the iterable object satisfying a
* predicate, if any.
*
* @note may not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this iterable is ordered.
* @param p the predicate
* @return an option containing the first element in the iterable object
* satisfying <code>p</code>, or <code>None</code> if none exists.
*/
override def find(p: A => Boolean): Option[A] = iterator.find(p)
/** Does this iterable contain no elements?
*/
override def isEmpty: Boolean = !this.iterator.hasNext
/** Combines the elements of this iterable together using the binary
* function <code>f</code>, from right to left, and starting with
* the value <code>z</code>.
*
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this iterable is ordered, or
* the operator is associative and commutative.
* @return <code>f(a<sub>0</sub>, f(a<sub>1</sub>, f(..., f(a<sub>n</sub>, z)...)))</code>
* if the iterable is <code>[a<sub>0</sub>, a1, ..., a<sub>n</sub>]</code>.
*/
override def foldRight[B](z: B)(op: (A, B) => B): B =
this.iterator.foldRight(z)(op)
/** Combines the elements of this iterable object together using the binary
* operator <code>op</code>, from right to left
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this iterable is ordered, or
* the operator is associative and commutative.
* @param op The operator to apply
*
* @return <code>a<sub>0</sub> op (... op (a<sub>n-1</sub> op a<sub>n</sub>)...)</code>
* if the iterable object has elements <code>a<sub>0</sub>, a<sub>1</sub>, ...,
* a<sub>n</sub></code>.
*
* @throws Predef.UnsupportedOperationException if the iterator is empty.
*/
override def reduceRight[B >: A](op: (A, B) => B): B =
this.iterator.reduceRight(op)
/** The iterable itself */
override def toIterable: Iterable[A] = thisCollection
/** The first element of this iterable.
*
* @note Might return different results for different runs, unless this iterable is ordered
* @throws Predef.NoSuchElementException if the iterable is empty.
*/
override def head: A =
if (isEmpty)
throw new NoSuchElementException
else
this.iterator.next
/** Return an iterable consisting only of the first <code>n</code>
* elements of this iterable, or else the whole iterable, if it has less
* than <code>n</code> elements.
*
* @param n the number of elements to take
* @note Might return different results for different runs, unless this iterable is ordered
*/
override def take(n: Int): Repr = {
val b = newBuilder
var i = 0
val it = iterator
while (i < n && it.hasNext) {
b += it.next
i += 1
}
b.result
}
/** A sub-iterable starting at index `from`
* and extending up to (but not including) index `until`.
*
* @note c.slice(from, to) is equivalent to (but possibly more efficient than)
* c.drop(from).take(to - from)
*
* @param from The index of the first element of the returned subsequence
* @param until The index of the element following the returned subsequence
* @note Might return different results for different runs, unless this iterable is ordered
*/
override def slice(from: Int, until: Int): Repr = {
val b = newBuilder
var i = from
val it = iterator drop from
while (i < until && it.hasNext) {
b += it.next
i += 1
}
b.result
}
/** Returns the longest prefix of this iterable whose elements satisfy
* the predicate <code>p</code>.
*
* @param p the test predicate.
* @note Might return different results for different runs, unless this iterable is ordered
*/
override def takeWhile(p: A => Boolean): Repr = {
val b = newBuilder
val it = iterator
while (it.hasNext) {
val x = it.next
if (!p(x)) return b.result
b += x
}
b.result
}
/** Returns the rightmost <code>n</code> elements from this iterable.
*
* @param n the number of elements to take
* @note Might return different results for different runs, unless this iterable is ordered
*/
def takeRight(n: Int): Repr = {
val b = newBuilder
val lead = this.iterator drop n
var go = false
for (x <- this) {
if (lead.hasNext) lead.next
else go = true
if (go) b += x
}
b.result
}
/** Returns the iterable wihtout its rightmost <code>n</code> elements.
*
* @param n the number of elements to take
* @note Might return different results for different runs, unless this iterable is ordered
*/
def dropRight(n: Int): Repr = {
val b = newBuilder
val lead = iterator drop n
val it = iterator
while (lead.hasNext) {
b += it.next
lead.next
}
b.result
}
/** Fills the given array <code>xs</code> with at most `len` elements of
* this iterable starting at position `start`.
* Copying will stop once either the end of the current iterable is reached or
* `len` elements have been copied or the end of the array is reached.
*
* @note Will not terminate for infinite-sized collections.
* @param xs the array to fill.
* @param start starting index.
* @param len number of elements to copy
*/
override def copyToArray[B >: A](xs: Array[B], start: Int, len: Int) {
var i = start
val end = (start + len) min xs.length
val it = iterator
while (i < end && it.hasNext) {
xs(i) = it.next
i += 1
}
}
/** Returns an iterable formed from this iterable and another iterable
* by combining corresponding elements in pairs.
* If one of the two iterables is longer than the other, its remaining elements are ignored.
* @param that The iterable providing the second half of each result pair
*/
def zip[A1 >: A, B, That](that: Iterable[B])(implicit bf: BuilderFactory[(A1, B), That, Repr]): That = {
val b = bf(repr)
val these = this.iterator
val those = that.iterator
while (these.hasNext && those.hasNext)
b += ((these.next, those.next))
b.result
}
/** Returns an iterable formed from this iterable and the specified iterable
* <code>that</code> by associating each element of the former with
* the element at the same position in the latter.
*
* @param that iterable <code>that</code> may have a different length
* as the self iterable.
* @param thisElem element <code>thisElem</code> is used to fill up the
* resulting iterable if the self iterable is shorter than
* <code>that</code>
* @param thatElem element <code>thatElem</code> is used to fill up the
* resulting iterable if <code>that</code> is shorter than
* the self iterable
* @return <code>Sequence((a<sub>0</sub>,b<sub>0</sub>), ...,
* (a<sub>n</sub>,b<sub>n</sub>), (elem,b<sub>n+1</sub>),
* ..., {elem,b<sub>m</sub>})</code>
* when <code>[a<sub>0</sub>, ..., a<sub>n</sub>] zip
* [b<sub>0</sub>, ..., b<sub>m</sub>]</code> is
* invoked where <code>m &gt; n</code>.
*
*/
def zipAll[B, A1 >: A, That](that: Iterable[B], thisElem: A1, thatElem: B)(implicit bf: BuilderFactory[(A1, B), That, Repr]): That = {
val b = bf(repr)
val these = this.iterator
val those = that.iterator
while (these.hasNext && those.hasNext)
b += ((these.next, those.next))
while (these.hasNext)
b += ((these.next, thatElem))
while (those.hasNext)
b += ((thisElem, those.next))
b.result
}
/** Zips this iterable with its indices (startiong from 0).
*/
def zipWithIndex[A1 >: A, That](implicit bf: BuilderFactory[(A1, Int), That, Repr]): That = {
val b = bf(repr)
var i = 0
for (x <- this) {
b += ((x, i))
i +=1
}
b.result
}
/** Sort the iterable according to the comparison function
* <code>&lt;(e1: a, e2: a) =&gt; Boolean</code>,
* which should be true iff <code>e1</code> is smaller than
* <code>e2</code>.
* The sort is stable. That is elements that are equal wrt `lt` appear in the
* same order in the sorted sequence as in the original.
*
* @param lt the comparison function
* @return an iterable sorted according to the comparison function
* <code>&lt;(e1: a, e2: a) =&gt; Boolean</code>.
* @ex <pre>
* List("Steve", "Tom", "John", "Bob")
* .sortWith((e1, e2) => (e1 compareTo e2) &lt; 0) =
* List("Bob", "John", "Steve", "Tom")</pre>
*/
def sortWith(lt: (A, A) => Boolean)(implicit m: ClassManifest[A @uncheckedVariance]): Repr = {
// !!! can we supply a default argument to m: ClassManifest ?
val arr = toArray
java.util.Arrays.sort(arr, Ordering fromLessThan lt)
val b = newBuilder
for (x <- arr) b += x
b.result
}
/** Checks if the other iterable object contains the same elements as this one.
*
* @note will not terminate for infinite-sized iterables.
* @param that the other iterable
* @return true, iff both iterables contain the same elements in the same order.
* @note Might return different results for different runs, unless this iterable is ordered
*/
def sameElements[B >: A](that: Iterable[B]): Boolean = {
val these = this.iterator
val those = that.iterator
while (these.hasNext && those.hasNext)
if (these.next != those.next)
return false
!these.hasNext && !those.hasNext
}
/** Returns a stream with all elements in this iterable object.
*/
override def toStream: Stream[A] = iterator.toStream
/** Method called from equality methods, so that user-defined subclasses can
* refuse to be equal to other collections of the same kind.
*/
override def canEqual(that: Any) = true
/** Creates a view of this iterable @see IterableView
*/
override def view = new IterableView[A, Repr] {
protected lazy val underlying = self.repr
override def iterator = self.iterator
}
/** A sub-iterable view starting at index `from`
* and extending up to (but not including) index `until`.
*
* @param from The index of the first element of the slice
* @param until The index of the element following the slice
* @note The difference between `view` and `slice` is that `view` produces
* a view of the current iterable, whereas `slice` produces a new iterable.
*
* @note Might return different results for different runs, unless this iterable is ordered
* @note view(from, to) is equivalent to view.slice(from, to)
*/
override def view(from: Int, until: Int) = view.slice(from, until)
@deprecated("use `head' instead") def first: A = head
/** <code>None</code> if iterable is empty. */
@deprecated("use `headOption' instead") def firstOption: Option[A] = headOption
@deprecated("use `toSequence' instead") def toSeq: Sequence[A] = toSequence
/**
* returns a projection that can be used to call non-strict <code>filter</code>,
* <code>map</code>, and <code>flatMap</code> methods that build projections
* of the collection.
*/
@deprecated("use `view' instead")
def projection = view
}

View File

@ -0,0 +1,404 @@
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2003-2009, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
// $Id: LinearSequenceTemplate.scala 18646 2009-09-04 16:56:11Z odersky $
package scala.collection
import generic._
import mutable.ListBuffer
// import immutable.{List, Nil, ::}
import generic._
import scala.util.control.Breaks._
/** Class <code>Linear[A]</code> represents linear sequences of elements.
* For such sequences `isEmpty`, `head` and `tail` are guaranteed to be
* efficient constant time (or near so) operations.
* It does not add any methods to <code>Sequence</code> but overrides
* several methods with optimized implementations.
*
* @author Martin Odersky
* @author Matthias Zenger
* @version 1.0, 16/07/2003
*/
trait LinearSequenceLike[+A, +Repr <: LinearSequenceLike[A, Repr]] extends SequenceLike[A, Repr] { self: Repr =>
override protected[this] def thisCollection: LinearSequence[A] = this.asInstanceOf[LinearSequence[A]]
override protected[this] def toCollection(repr: Repr): LinearSequence[A] = repr.asInstanceOf[LinearSequence[A]]
/** Abstract method to be implemented in a subclass */
def isEmpty: Boolean
/** Abstract method to be implemented in a subclass */
def head: A
/** Abstract method to be implemented in a subclass */
def tail: Repr
/** Returns the number of elements in the linear sequence.
*/
def length: Int = {
var these = self
var len = 0
while (!these.isEmpty) {
len += 1
these = these.tail
}
len
}
/** Returns the <code>n</code>-th element of this linear sequence. The first element
* (head of the linear sequence) is at position 0.
*
* @param n index of the element to return
* @return the element at position <code>n</code> in this linear sequence.
* @throws Predef.NoSuchElementException if the linear sequence is too short.
*/
def apply(n: Int): A = drop(n).head
/** Returns the elements in the sequence as an iterator
*/
override def iterator: Iterator[A] = new Iterator[A] {
var these = self
def hasNext: Boolean = !these.isEmpty
def next: A =
if (hasNext) {
val result = these.head; these = these.tail; result
} else Iterator.empty.next
override def toList: List[A] = these.toList
}
/** Apply the given function <code>f</code> to each element of this linear sequence
* (while respecting the order of the elements).
*
* @param f the treatment to apply to each element.
*/
override def foreach[B](f: A => B) {
var these = this
while (!these.isEmpty) {
f(these.head)
these = these.tail
}
}
/** Tests if the predicate <code>p</code> is satisfied by all elements
* in this list.
*
* @param p the test predicate.
* @return <code>true</code> iff all elements of this list satisfy the
* predicate <code>p</code>.
*/
override def forall(p: A => Boolean): Boolean = {
var these = this
while (!these.isEmpty) {
if (!p(these.head)) return false
these = these.tail
}
true
}
/** Tests the existence in this list of an element that satisfies the
* predicate <code>p</code>.
*
* @param p the test predicate.
* @return <code>true</code> iff there exists an element in this list that
* satisfies the predicate <code>p</code>.
*/
override def exists(p: A => Boolean): Boolean = {
var these = this
while (!these.isEmpty) {
if (p(these.head)) return true
these = these.tail
}
false
}
/** Count the number of elements in the iterable which satisfy a predicate.
*
* @param p the predicate for which to count
* @return the number of elements satisfying the predicate <code>p</code>.
*/
override def count(p: A => Boolean): Int = {
var these = this
var cnt = 0
while (!these.isEmpty) {
if (p(these.head)) cnt += 1
these = these.tail
}
cnt
}
/** Find and return the first element of the list satisfying a
* predicate, if any.
*
* @param p the predicate
* @return the first element in the list satisfying <code>p</code>,
* or <code>None</code> if none exists.
*/
override def find(p: A => Boolean): Option[A] = {
var these = this
while (!these.isEmpty) {
if (p(these.head)) return Some(these.head)
these = these.tail
}
None
}
/** Combines the elements of this list together using the binary
* function <code>f</code>, from left to right, and starting with
* the value <code>z</code>.
*
* @return <code>f(... (f(f(z, a<sub>0</sub>), a<sub>1</sub>) ...),
* a<sub>n</sub>)</code> if the list is
* <code>[a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub>]</code>.
*/
override def foldLeft[B](z: B)(f: (B, A) => B): B = {
var acc = z
var these = this
while (!these.isEmpty) {
acc = f(acc, these.head)
these = these.tail
}
acc
}
/** Combines the elements of this list together using the binary
* function <code>f</code>, from right to left, and starting with
* the value <code>z</code>.
*
* @return <code>f(a<sub>0</sub>, f(a<sub>1</sub>, f(..., f(a<sub>n</sub>, z)...)))</code>
* if the list is <code>[a<sub>0</sub>, a1, ..., a<sub>n</sub>]</code>.
*/
override def foldRight[B](z: B)(f: (A, B) => B): B =
if (this.isEmpty) z
else f(head, tail.foldRight(z)(f))
/** Combines the elements of this list together using the binary
* operator <code>op</code>, from left to right
* @param op The operator to apply
* @return <code>op(... op(a<sub>0</sub>,a<sub>1</sub>), ..., a<sub>n</sub>)</code>
if the list has elements
* <code>a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub></code>.
* @throws Predef.UnsupportedOperationException if the list is empty.
*/
override def reduceLeft[B >: A](f: (B, A) => B): B =
if (isEmpty) throw new UnsupportedOperationException("empty.reduceLeft")
else tail.foldLeft[B](head)(f)
/** Combines the elements of this iterable object together using the binary
* operator <code>op</code>, from right to left
* @note Will not terminate for infinite-sized collections.
* @param op The operator to apply
*
* @return <code>a<sub>0</sub> op (... op (a<sub>n-1</sub> op a<sub>n</sub>)...)</code>
* if the iterable object has elements <code>a<sub>0</sub>, a<sub>1</sub>, ...,
* a<sub>n</sub></code>.
*
* @throws Predef.UnsupportedOperationException if the iterator is empty.
*/
override def reduceRight[B >: A](op: (A, B) => B): B =
if (isEmpty) throw new UnsupportedOperationException("Nil.reduceRight")
else if (tail.isEmpty) head
else op(head, tail.reduceRight(op))
/** The last element of this linear sequence.
*
* @throws Predef.NoSuchElementException if the linear sequence is empty.
*/
override def last: A = {
if (isEmpty) throw new NoSuchElementException
var these = this
var nx = these.tail
while (!nx.isEmpty) {
these = nx
nx = nx.tail
}
these.head
}
override def take(n: Int): Repr = {
val b = newBuilder
var i = 0
var these = repr
while (!these.isEmpty && i < n) {
i += 1
b += these.head
these = these.tail
}
b.result
}
override def drop(n: Int): Repr = {
var these: Repr = repr
var count = n
while (!these.isEmpty && count > 0) {
these = these.tail
count -= 1
}
these
}
/** Returns the rightmost <code>n</code> elements from this iterable.
* @param n the number of elements to take
*/
override def dropRight(n: Int): Repr = {
val b = newBuilder
var these = this
var lead = this drop n
while (!lead.isEmpty) {
b += these.head
these = these.tail
lead = lead.tail
}
b.result
}
/** A sub-traversable starting at index `from`
* and extending up to (but not including) index `until`.
*
* @note c.slice(from, to) is equivalent to (but possibly more efficient than)
* c.drop(from).take(to - from)
*
* @param from The index of the first element of the returned subsequence
* @param until The index of the element following the returned subsequence
* @note Might return different results for different runs, unless this traversable is ordered
*/
override def slice(from: Int, until: Int): Repr = {
val b = newBuilder
var i = from
var these = this drop from
while (i < until && !these.isEmpty) {
b += these.head
these = these.tail
i += 1
}
b.result
}
/** Returns the longest prefix of this traversable whose elements satisfy
* the predicate <code>p</code>.
*
* @param p the test predicate.
* @note Might return different results for different runs, unless this traversable is ordered
*/
override def takeWhile(p: A => Boolean): Repr = {
val b = newBuilder
var these = this
while (!these.isEmpty && p(these.head)) {
b += these.head
these = these.tail
}
b.result
}
/** Returns a pair consisting of the longest prefix of the linear sequence whose
* elements all satisfy the given predicate, and the rest of the linear sequence.
*
* @param p the test predicate
*/
override def span(p: A => Boolean): (Repr, Repr) = {
var these: Repr = repr
val b = newBuilder
while (!these.isEmpty && p(these.head)) {
b += these.head
these = these.tail
}
(b.result, these)
}
/** Returns true iff the other linear sequence contains the same elements as this one.
*
* @note will not terminate for two infinite-sized linear sequences.
* @param that the other linear sequence
*/
override def sameElements[B >: A](that: Iterable[B]): Boolean = that match {
case that1: LinearSequence[_] =>
var these = this
var those = that
while (!these.isEmpty && !those.isEmpty && these.head == those.head) {
these = these.tail
those = those.tail
}
these.isEmpty && those.isEmpty
case _ => super.sameElements(that)
}
// Overridden methods from Sequence
/** Result of comparing <code>length</code> with operand <code>len</code>.
* returns <code>x</code> where
* <code>x &lt; 0</code> iff <code>this.length &lt; len</code>
* <code>x == 0</code> iff <code>this.length == len</code>
* <code>x &gt; 0</code> iff <code>this.length &gt; len</code>.
*/
override def lengthCompare(len: Int): Int = {
var i = 0
var these = self
while (!these.isEmpty && i <= len) {
i += 1
these = these.tail
}
i - len
}
/** Is this partial function defined for the index <code>x</code>?
*/
override def isDefinedAt(x: Int): Boolean = x >= 0 && lengthCompare(x) > 0
/** Returns length of longest segment starting from a start index `from`
* such that every element of the segment satisfies predicate `p`.
* @note may not terminate for infinite-sized collections.
* @param p the predicate
* @param from the start index
*/
override def segmentLength(p: A => Boolean, from: Int): Int = {
var i = 0
var these = this drop from
while (!these.isEmpty && p(these.head)) {
i += 1
these = these.tail
}
i
}
/** Returns index of the first element starting from a start index
* satisying a predicate, or -1, if none exists.
*
* @note may not terminate for infinite-sized linear sequences.
* @param p the predicate
* @param from the start index
*/
override def indexWhere(p: A => Boolean, from: Int): Int = {
var i = from
var these = this drop from
while (!these.isEmpty && !p(these.head)) {
i += 1
these = these.tail
}
if (these.isEmpty) -1 else i
}
/** Returns index of the last element satisying a predicate, or -1, if none exists.
*
* @param p the predicate
* @return the index of the last element satisfying <code>p</code>,
* or -1 if such an element does not exist
*/
override def lastIndexWhere(p: A => Boolean, end: Int): Int = {
var i = 0
var these = this
var last = -1
while (!these.isEmpty && i <= end) {
if (p(these.head)) last = i
these = these.tail
i += 1
}
last
}
}

View File

@ -0,0 +1,492 @@
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2003-2009, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
// $Id: SequenceTemplate.scala 18646 2009-09-04 16:56:11Z odersky $
package scala.collection
import generic._
import mutable.{ListBuffer, HashMap}
// import immutable.{List, Nil, ::}
import generic._
/** Class <code>Sequence[A]</code> represents sequences of elements
* of type <code>A</code>.
* It adds the following methods to class Iterable:
* `length`, `lengthCompare`, `apply`, `isDefinedAt`, `segmentLength`, `prefixLength`,
* `indexWhere`, `indexOf`, `lastIndexWhere`, `lastIndexOf`, `reverse`, `reverseIterator`,
* `startsWith`, `endsWith`, `indexOfSeq`, , `zip`, `zipAll`, `zipWithIndex`.
*
*
* @author Martin Odersky
* @author Matthias Zenger
* @version 1.0, 16/07/2003
*/
trait SequenceLike[+A, +Repr] extends IterableLike[A, Repr] { self =>
override protected[this] def thisCollection: Sequence[A] = this.asInstanceOf[Sequence[A]]
override protected[this] def toCollection(repr: Repr): Sequence[A] = repr.asInstanceOf[Sequence[A]]
import Traversable.breaks._
/** Returns the length of the sequence.
*/
def length: Int
/** Returns the elements at position `idx`
*/
def apply(idx: Int): A
/** Result of comparing <code>length</code> with operand <code>len</code>.
* returns <code>x</code> where
* <code>x &lt; 0</code> iff <code>this.length &lt; len</code>
* <code>x == 0</code> iff <code>this.length == len</code>
* <code>x &gt; 0</code> iff <code>this.length &gt; len</code>.
*
* The method as implemented here does not call length directly; its running time
* is O(length min len) instead of O(length). The method should be overwritten
* if computing length is cheap.
*/
def lengthCompare(len: Int): Int = {
var i = 0
breakable {
for (_ <- this) {
i += 1
if (i > len) break
}
}
i - len
}
/** Should always be <code>length</code> */
override def size = length
/** Is this partial function defined for the index <code>x</code>?
*/
def isDefinedAt(x: Int): Boolean = (x >= 0) && (x < length)
/** Returns length of longest segment starting from a start index `from`
* such that every element of the segment satisfies predicate `p`.
* @note may not terminate for infinite-sized collections.
* @param p the predicate
* @param from the start index
*/
def segmentLength(p: A => Boolean, from: Int): Int = {
var result = 0
var i = 0
breakable {
for (x <- this) {
if (i >= from && !p(x)) { result = i - from; break }
else i += 1
}
}
result
}
/** Returns length of longest prefix of this seqence
* such that every element of the prefix satisfies predicate `p`.
* @note may not terminate for infinite-sized collections.
* @param p the predicate
*/
def prefixLength(p: A => Boolean) = segmentLength(p, 0)
/** Returns index of the first element satisfying a predicate, or -1, if none exists.
*
* @note may not terminate for infinite-sized collections.
* @param p the predicate
*/
def indexWhere(p: A => Boolean): Int = indexWhere(p, 0)
/** Returns index of the first element starting from a start index
* satisying a predicate, or -1, if none exists.
*
* @note may not terminate for infinite-sized collections.
* @param p the predicate
* @param from the start index
*/
def indexWhere(p: A => Boolean, from: Int): Int = {
var result = -1
var i = from
breakable {
for (x <- this) {
if (i >= from && p(x)) { result = i; break }
else i += 1
}
}
result
}
/** Returns index of the first element satisying a predicate, or -1. */
@deprecated("Use `indexWhere' instead")
def findIndexOf(p: A => Boolean): Int = indexWhere(p)
/** Returns the index of the first occurence of the specified
* object in this iterable object.
*
* @note may not terminate for infinite-sized collections.
* @param elem element to search for.
* @return the index in this sequence of the first occurence of the
* specified element, or -1 if the sequence does not contain
* this element.
*/
def indexOf[B >: A](elem: B): Int = indexOf(elem, 0)
/** Returns the index of the first occurence of the specified
* object in this iterable object, starting from a start index, or
* -1, if none exists.
*
* @note may not terminate for infinite-sized collections.
* @param elem element to search for.
*/
def indexOf[B >: A](elem: B, from: Int): Int = indexWhere(elem ==, from)
/** Returns the index of the last occurence of the specified element
* in this sequence, or -1 if the sequence does not contain this element.
*
* @param elem element to search for.
* @return the index in this sequence of the last occurence of the
* specified element, or -1 if the sequence does not contain
* this element.
*/
def lastIndexOf[B >: A](elem: B): Int = lastIndexWhere(elem ==)
/** Returns the index of the last
* occurence of the specified element in this sequence
* before or at a given end index,
* or -1 if the sequence does not contain this element.
*
* @param elem element to search for.
* @param end the end index
*/
def lastIndexOf[B >: A](elem: B, end: Int): Int = lastIndexWhere(elem ==, end)
/** Returns index of the last element satisying a predicate, or -1, if none exists.
*
* @param p the predicate
* @return the index of the last element satisfying <code>p</code>,
* or -1 if such an element does not exist
*/
def lastIndexWhere(p: A => Boolean): Int = lastIndexWhere(p, length - 1)
/** Returns index of the last element not exceeding a given end index
* and satisying a predicate, or -1 if none exists.
*
* @param end the end index
* @param p the predicate
*/
def lastIndexWhere(p: A => Boolean, end: Int): Int = {
var i = length - 1
val it = reverseIterator
while (it.hasNext && { val elem = it.next; (i > end || !p(elem)) }) i -= 1
i
}
/** A sequence of type <code>C</code> consisting of all elements of
* this sequence in reverse order.
* @note the operation is implemented by building a new sequence
* from <code>this(length - 1), ..., this(0)</code>
* If random access is inefficient for the given sequence implementation,
* this operation should be overridden.
*/
def reverse: Repr = {
var xs: List[A] = List()
for (x <- this)
xs = x :: xs
val b = newBuilder
for (x <- xs)
b += x
b.result
}
/** The elements of this sequence in reversed order
*/
def reverseIterator: Iterator[A] = toCollection(reverse).iterator
@deprecated("use `reverseIterator' instead")
def reversedElements = reverseIterator
/**
* Checks whether the argument sequence is contained at the
* specified index within the receiver object.
*
* If the both the receiver object, <code>this</code> and
* the argument, <code>that</code> are infinite sequences
* this method may not terminate.
*
* @return true if <code>that</code> is contained in
* <code>this</code>, at the specified index, otherwise false
*
* @see String.startsWith
*/
def startsWith[B](that: Sequence[B], offset: Int): Boolean = {
val i = this.iterator drop offset
val j = that.iterator
while (j.hasNext && i.hasNext)
if (i.next != j.next)
return false
!j.hasNext
}
/**
* Check whether the receiver object starts with the argument sequence.
*
* @return true if <code>that</code> is a prefix of <code>this</code>,
* otherwise false
*/
def startsWith[B](that: Sequence[B]): Boolean = startsWith(that, 0)
/** @return true if this sequence end with that sequence
* @see String.endsWith
*/
def endsWith[B](that: Sequence[B]): Boolean = {
val i = this.iterator.drop(length - that.length)
val j = that.iterator
while (i.hasNext && j.hasNext)
if (i.next != j.next)
return false
!j.hasNext
}
/** @return -1 if <code>that</code> not contained in this, otherwise the
* first index where <code>that</code> is contained.
*/
def indexOfSeq[B >: A](that: Sequence[B]): Int = indexOfSeq(that, 0)
def indexOfSeq[B >: A](that: Sequence[B], fromIndex: Int): Int =
if (this.hasDefiniteSize && that.hasDefiniteSize)
KMP.indexOf(thisCollection, 0, length, that, 0, that.length, fromIndex)
else {
var i = fromIndex
var s: Sequence[A] = thisCollection drop i
while (!s.isEmpty) {
if (s startsWith that)
return i
i += 1
s = s.tail
}
-1
}
/** @return -1 if <code>that</code> not contained in this, otherwise the
* last index where <code>that</code> is contained.
* @note may not terminate for infinite-sized collections.
*/
def lastIndexOfSeq[B >: A](that: Sequence[B]): Int = lastIndexOfSeq(that, that.length)
// since there's no way to find the last index in an infinite sequence,
// we just document it may not terminate and assume it will.
def lastIndexOfSeq[B >: A](that: Sequence[B], fromIndex: Int): Int =
KMP.lastIndexOf(thisCollection, 0, length, that, 0, that.length, fromIndex)
/** Tests if the given value <code>elem</code> is a member of this
* sequence.
*
* @param elem element whose membership has to be tested.
* @return <code>true</code> iff there is an element of this sequence
* which is equal (w.r.t. <code>==</code>) to <code>elem</code>.
*/
def contains(elem: Any): Boolean = exists (_ == elem)
/** <p>
* Computes the multiset union of this sequence and the given sequence
* <code>that</code>. For example:
* </p><pre>
* <b>val</b> xs = List(1, 1, 2)
* <b>val</b> ys = List(1, 2, 2, 3)
* println(xs union ys) // prints "List(1, 1, 2, 1, 2, 2, 3)"
* println(ys union xs) // prints "List(1, 2, 2, 3, 1, 1, 2)"
* </pre>
*
* @param that the sequence of elements to add to the sequence.
* @return a sequence containing the elements of this
* sequence and those of the given sequence <code>that</code>.
*/
def union[B >: A, That](that: Sequence[B])(implicit bf: BuilderFactory[B, That, Repr]): That =
this ++ that
/** <p>
* Computes the multiset difference between this sequence and the
* given sequence <code>that</code>. If an element appears more
* than once in both sequences, the difference contains <i>m</i> copies
* of that element, where <i>m</i> is the difference between the
* number of times the element appears in this sequence and the number
* of times it appears in <code>that</code>. For example:
* </p><pre>
* <b>val</b> xs = List(1, 1, 2)
* <b>val</b> ys = List(1, 2, 2, 3)
* println(xs diff ys) // prints "List(1)"
* println(xs -- ys) // prints "List()"
* </pre>
*
* @param that the sequence of elements to remove from this sequence.
* @return the sequence of elements contained only in this sequence plus
* <i>m</i> copies of each element present in both sequences,
* where <i>m</i> is defined as above.
*/
def diff[B >: A, That](that: Sequence[B]): Repr = {
val occ = occCounts(that)
val b = newBuilder
for (x <- this)
if (occ(x) == 0) b += x
else occ(x) -= 1
b.result
}
/** <p>
* Computes the multiset intersection between this sequence and the
* given sequence <code>that</code>; the intersection contains <i>m</i>
* copies of an element contained in both sequences, where <i>m</i> is
* the smaller of the number of times the element appears in this
* sequence or in <code>that</code>. For example:
* </p><pre>
* <b>val</b> xs = List(1, 1, 2)
* <b>val</b> ys = List(3, 2, 2, 1)
* println(xs intersect ys) // prints "List(1, 2)"
* println(ys intersect xs) // prints "List(2, 1)"
* </pre>
*
* @param that the sequence to intersect.
* @return the sequence of elements contained both in this sequence and
* in the given sequence <code>that</code>.
*/
def intersect[B >: A, That](that: Sequence[B]): Repr = {
val occ = occCounts(that)
val b = newBuilder
for (x <- this)
if (occ(x) > 0) {
b += x
occ(x) -= 1
}
b.result
}
private def occCounts[B](seq: Sequence[B]): mutable.Map[B, Int] = {
val occ =
if (seq.isEmpty || seq.head.isInstanceOf[Unhashable])
new mutable.ListMap[B, Int] { override def default(k: B) = 0 }
else
new mutable.HashMap[B, Int] { override def default(k: B) = 0 }
for (y <- seq) occ(y) += 1
occ
}
/** Builds a new sequence from this sequence in which any duplicates (wrt to ==) removed.
* Among duplicate elements, only the first one is retained in the result sequence
*/
def removeDuplicates: Repr = {
val b = newBuilder
var seen = Set[A]()
for (x <- this) {
if (!(seen contains x)) {
b += x
seen = (seen + x)
}
}
b.result
}
/** A new sequence, consisting of all elements of current sequence
* except that `replaced` elements starting from `from` are replaced
* by `patch`.
*/
def patch[B >: A, That](from: Int, patch: Sequence[B], replaced: Int)(implicit bf: BuilderFactory[B, That, Repr]): That = {
val b = bf(repr)
val (prefix, rest) = this.splitAt(from)
b ++= toCollection(prefix)
b ++= patch
b ++= toCollection(rest).view drop replaced
b.result
}
/** Returns a new sequence of given length containing the elements of this sequence followed by zero
* or more occurrences of given elements.
*/
def padTo[B >: A, That](len: Int, elem: B)(implicit bf: BuilderFactory[B, That, Repr]): That = {
val b = bf(repr)
b.sizeHint(length max len)
var diff = len - length
b ++= thisCollection
while (diff > 0) {
b += elem
diff -=1
}
b.result
}
/**
* Overridden for efficiency.
*
* @return the sequence itself
*/
override def toSequence: Sequence[A] = thisCollection
/** The range of all indices of this sequence.
*/
def indices: Range = 0 until length
override def view = new SequenceView[A, Repr] {
protected lazy val underlying = self.repr
override def iterator = self.iterator
override def length = self.length
override def apply(idx: Int) = self.apply(idx)
}
override def view(from: Int, until: Int) = view.slice(from, until)
override def hashCode() = (Sequence.hashSeed /: this)(_ * 41 + _.hashCode)
override def equals(that: Any): Boolean = that match {
case that: Sequence[_] => /*(that canEqual this)!!! &&*/ (this sameElements that)
case _ => false
}
/** Need to override string, so that it's not the Function1's string that gets mixed in.
*/
override def toString = super[IterableLike].toString
/** Returns index of the last element satisying a predicate, or -1. */
@deprecated("use `lastIndexWhere' instead")
def findLastIndexOf(p: A => Boolean): Int = lastIndexWhere(p)
/** A sub-sequence starting at index <code>from</code>
* and extending up to the length of the current sequence
*
* @param from The index of the first element of the slice
* @throws IndexOutOfBoundsException if <code>from &lt; 0</code>
*/
@deprecated("use `drop' instead")
def slice(from: Int): Sequence[A] = toCollection(slice(from, length))
@deprecated("Should be replaced by <code>(s1, s2) forall { case (x, y) => f(x, y) }</code>")
def equalsWith[B](that: Sequence[B])(f: (A,B) => Boolean): Boolean = {
val i = this.iterator
val j = that.iterator
while (i.hasNext && j.hasNext)
if (!f(i.next, j.next))
return false
!i.hasNext && !j.hasNext
}
/** Is <code>that</code> a slice in this? */
@deprecated("Should be replaced by <code>indexOfSeq(that) != -1</code>")
def containsSlice[B](that: Sequence[B]): Boolean = indexOfSeq(that) != -1
/**
* returns a projection that can be used to call non-strict <code>filter</code>,
* <code>map</code>, and <code>flatMap</code> methods that build projections
* of the collection.
*/
@deprecated("use `view' instead")
override def projection = view
}

View File

@ -0,0 +1,829 @@
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2003-2009, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
// $Id: TraversableLike.scala 18589 2009-08-27 14:45:35Z odersky $
package scala.collection
import generic._
import scala.reflect.ClassManifest
// import immutable.{List, Stream, Nil} //!!!
import mutable.{Buffer, ArrayBuffer, ListBuffer}
import annotation.experimental
/** <p>
* A template trait for traversable collections.
* This is a base trait of all kinds of Scala collections. It implements
* the behavior common to all collections, in terms of a method
* <code>foreach</code> with signature:
* </p><pre>
* <b>def</b> foreach[U](f: Elem => U): Unit</pre>
* <p>
* Collection classes mixing in this trait provide a concrete
* <code>foreach</code> method which traverses all the
* elements contained in the collection, applying a given function to each.
* They also need to provide a method <code>newBuilder</code>
* which creates a builder for collections of the same kind.
* </p>
* <p>
* A traversable class might or might not have two properties: strictness
* and orderedness. Neither is represented as a type.
* </p>
* <p>
* The instances of a strict collection class have all their elements
* computed before they can be used as values. By contrast, instances of
* a non-strict collection class may defer computation of some of their
* elements until after the instance is available as a value.
* A typical example of a non-strict collection class is a
* <a href="../immutable/Stream.html" target="ContentFrame">
* <code>scala.collection.immutable.Stream</code></a>.
* A more general class of examples are <code>TraversableViews</code>.
* </p>
* <p>
* If a collection is an instance of an ordered collection class, traversing
* its elements with <code>foreach</code> will always visit elements in the
* same order, even for different runs of the program. If the class is not
* ordered, <code>foreach</code> can visit elements in different orders for
* different runs (but it will keep the same order in the same run).<br/>
* A typical example of a collection class which is not ordered is a
* <code>HashMap</code> of objects. The traversal order for hash maps will
* depend on the hash codes of its elements, and these hash codes might
* differ from one run to the next. By contrast, a <code>LinkedHashMap</code>
* is odered because it's <code>foreach</code> method visits elements in the
* order they were inserted into the <code>HashMap</code>.
* </p>
*
* @author Martin Odersky
* @version 2.8
*/
trait TraversableLike[+A, +Repr] {
self =>
import Traversable.breaks._
def repr: Repr = this.asInstanceOf[Repr]
protected[this] def thisCollection: Traversable[A] = this.asInstanceOf[Traversable[A]]
protected[this] def toCollection(repr: Repr): Traversable[A] = repr.asInstanceOf[Traversable[A]]
/** Create a new builder for this collection type.
*/
protected[this] def newBuilder: Builder[A, Repr]
/** Apply a function <code>f</code> to all elements of this
* traversable object.
*
* @param f A function that is applied for its side-effect to every element.
* The result (of arbitrary type U) of function `f` is discarded.
*
* @note This method underlies the implementation of most other bulk operations.
* It's important to implement this method in an efficient way.
*/
def foreach[U](f: A => U): Unit
/** Does this collection contain no elements?
*/
def isEmpty: Boolean = {
var result = true
breakable {
for (x <- this) {
result = false
break
}
}
result
}
/** Does this collection contain some elements?
*/
def nonEmpty: Boolean = !isEmpty
/** The number of elements in this collection
*/
def size: Int = {
var result = 0
for (x <- this) result += 1
result
}
/** Returns true if this collection is known to have finite size.
* This is the case if the collection type is strict, or if the
* collection type is non-strict (e.g. it's a Stream), but all
* collection elements have been computed.
* Many methods in this trait will not work on collections of
* infinite sizes.
*/
def hasDefiniteSize = true
/** Creates a new traversable of type `That` which contains all elements of this traversable
* followed by all elements of another traversable.
*
* @param that The traversable to append
*/
def ++[B >: A, That](that: Traversable[B])(implicit bf: BuilderFactory[B, That, Repr]): That = {
val b = bf(repr)
b ++= thisCollection
b ++= that
b.result
}
/** Creates a new traversable of type `That` which contains all elements of this traversable
* followed by all elements of an iterator.
*
* @param that The iterator to append
*/
def ++[B >: A, That](that: Iterator[B])(implicit bf: BuilderFactory[B, That, Repr]): That = {
val b = bf(repr)
b ++= thisCollection
b ++= that
b.result
}
/** Returns the traversable that results from applying the given function
* <code>f</code> to each element of this traversable and collecting the results
* in a traversable of type `That`.
*
* @param f function to apply to each element.
*/
def map[B, That](f: A => B)(implicit bf: BuilderFactory[B, That, Repr]): That = {
val b = bf(repr)
for (x <- this) b += f(x)
b.result
}
/** Applies the given function <code>f</code> to each element of
* this traversable, then concatenates the results in a traversable of type That.
*
* @param f the function to apply on each element.
*/
def flatMap[B, That](f: A => Traversable[B])(implicit bf: BuilderFactory[B, That, Repr]): That = {
val b = bf(repr)
for (x <- this) b ++= f(x)
b.result
}
/** Returns all the elements of this traversable that satisfy the
* predicate <code>p</code>. The order of the elements is preserved.
* @param p the predicate used to filter the traversable.
* @return the elements of this traversable satisfying <code>p</code>.
*/
def filter(p: A => Boolean): Repr = {
val b = newBuilder
for (x <- this)
if (p(x)) b += x
b.result
}
/** Returns a traversable with all elements of this traversable which do not satisfy the predicate
* <code>p</code>.
*
* @param p the predicate used to test elements
* @return the traversable without all elements that satisfy <code>p</code>
*/
def filterNot(p: A => Boolean): Repr = filter(!p(_))
/** Returns a new traversable based on the partial function <code>pf</code>,
* containing pf(x) for all the elements which are defined on pf.
* The order of the elements is preserved.
* @param pf the partial function which filters and maps the traversable.
* @return the new traversable.
*/
@experimental
def filterMap[B, That](pf: PartialFunction[Any, B])(implicit bf: BuilderFactory[B, That, Repr]): That = {
val b = bf(repr)
for (x <- this) if (pf.isDefinedAt(x)) b += pf(x)
b.result
}
/** Returns a traversable with all elements of this traversable which do not satisfy the predicate
* <code>p</code>.
*
* @param p the predicate used to test elements
* @return the traversable without all elements that satisfy <code>p</code>
*/
@deprecated("use `filterNot' instead")
def remove(p: A => Boolean): Repr = filterNot(p)
/** Partitions this traversable in two traversables according to a predicate.
*
* @param p the predicate on which to partition
* @return a pair of traversables: the traversable that satisfies the predicate
* <code>p</code> and the traversable that does not.
* The relative order of the elements in the resulting traversables
* is the same as in the original traversable.
*/
def partition(p: A => Boolean): (Repr, Repr) = {
val l, r = newBuilder
for (x <- this) (if (p(x)) l else r) += x
(l.result, r.result)
}
/** Partition this traversable into a map of traversables
* according to some discriminator function.
* @invariant (xs partition f)(k) = xs filter (x => f(x) == k)
*
* @note This method is not re-implemented by views. This means
* when applied to a view it will always force the view and
* return a new collection.
*/
def groupBy[K](f: A => K): Map[K, Repr] = {
var m = Map[K, Builder[A, Repr]]()
for (elem <- this) {
val key = f(elem)
val bldr = m get key match {
case None => val b = newBuilder; m = m updated (key, b); b
case Some(b) => b
}
bldr += elem
}
m mapValues (_.result)
}
/** Return true iff the given predicate `p` yields true for all elements
* of this traversable.
*
* @note May not terminate for infinite-sized collections.
* @param p the predicate
*/
def forall(p: A => Boolean): Boolean = {
var result = true
breakable {
for (x <- this)
if (!p(x)) { result = false; break }
}
result
}
/** Return true iff there is an element in this traversable for which the
* given predicate `p` yields true.
*
* @note May not terminate for infinite-sized collections.
* @param p the predicate
*/
def exists(p: A => Boolean): Boolean = {
var result = false
breakable {
for (x <- this)
if (p(x)) { result = true; break }
}
result
}
/** Count the number of elements in the traversable which satisfy a predicate.
*
* @note Will not terminate for infinite-sized collections.
* @param p the predicate for which to count
* @return the number of elements satisfying the predicate <code>p</code>.
*/
def count(p: A => Boolean): Int = {
var cnt = 0
for (x <- this) {
if (p(x)) cnt += 1
}
cnt
}
/** Find and return the first element of the traversable object satisfying a
* predicate, if any.
*
* @note may not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered.
* @param p the predicate
* @return an option containing the first element in the traversable object
* satisfying <code>p</code>, or <code>None</code> if none exists.
*/
def find(p: A => Boolean): Option[A] = {
var result: Option[A] = None
breakable {
for (x <- this)
if (p(x)) { result = Some(x); break }
}
result
}
/** Combines the elements of this traversable object together using the binary
* function <code>f</code>, from left to right, and starting with
* the value <code>z</code>.
*
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
* @return <code>f(... (f(f(z, a<sub>0</sub>), a<sub>1</sub>) ...),
* a<sub>n</sub>)</code> if the traversable is
* <code>[a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub>]</code>.
*/
def foldLeft[B](z: B)(op: (B, A) => B): B = {
var result = z
for (x <- this)
result = op(result, x)
result
}
/** Similar to <code>foldLeft</code> but can be used as
* an operator with the order of traversable and zero arguments reversed.
* That is, <code>z /: xs</code> is the same as <code>xs foldLeft z</code>
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
*/
def /: [B](z: B)(op: (B, A) => B): B = foldLeft(z)(op)
/** Combines the elements of this traversable together using the binary
* function <code>f</code>, from right to left, and starting with
* the value <code>z</code>.
*
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
* @return <code>f(a<sub>0</sub>, f(a<sub>1</sub>, f(..., f(a<sub>n</sub>, z)...)))</code>
* if the traversable is <code>[a<sub>0</sub>, a1, ..., a<sub>n</sub>]</code>.
*/
def foldRight[B](z: B)(op: (A, B) => B): B = {
var elems: List[A] = Nil
for (x <- this) elems = x :: elems
elems.foldLeft(z)((x, y) => op(y, x))
}
/** An alias for <code>foldRight</code>.
* That is, <code>xs :\ z</code> is the same as <code>xs foldRight z</code>
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
*/
def :\ [B](z: B)(op: (A, B) => B): B = foldRight(z)(op)
/** Combines the elements of this traversable object together using the binary
* operator <code>op</code>, from left to right
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
* @param op The operator to apply
* @return <code>op(... op(a<sub>0</sub>,a<sub>1</sub>), ..., a<sub>n</sub>)</code>
if the traversable object has elements
* <code>a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub></code>.
* @throws Predef.UnsupportedOperationException if the traversable object is empty.
*/
def reduceLeft[B >: A](op: (B, A) => B): B = {
if (isEmpty) throw new UnsupportedOperationException("empty.reduceLeft")
var result: B = head
var first = true
for (x <- this)
if (first) first = false
else result = op(result, x)
result
}
/** Combines the elements of this traversable object together using the binary
* operator <code>op</code>, from left to right
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
* @param op The operator to apply
* @return If the traversable is non-empty, the result of the operations as an Option, otherwise None.
*/
def reduceLeftOption[B >: A](op: (B, A) => B): Option[B] = {
if (isEmpty) None else Some(reduceLeft(op))
}
/** Combines the elements of this traversable object together using the binary
* operator <code>op</code>, from right to left
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
* @param op The operator to apply
*
* @return <code>a<sub>0</sub> op (... op (a<sub>n-1</sub> op a<sub>n</sub>)...)</code>
* if the traversable object has elements <code>a<sub>0</sub>, a<sub>1</sub>, ...,
* a<sub>n</sub></code>.
*
* @throws Predef.UnsupportedOperationException if the iterator is empty.
*/
def reduceRight[B >: A](op: (A, B) => B): B = {
if (isEmpty) throw new UnsupportedOperationException("empty.reduceRight")
var elems: List[A] = Nil
for (x <- this) elems = x :: elems
elems.reduceLeft[B]((x, y) => op(y, x))
}
/** Combines the elements of this traversable object together using the binary
* operator <code>op</code>, from right to left.
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
* @param op The operator to apply
* @return If the traversable is non-empty, the result of the operations as an Option, otherwise None.
*/
def reduceRightOption[B >: A](op: (A, B) => B): Option[B] = {
if (isEmpty) None else Some(reduceRight(op))
}
/** Returns the sum of all elements with respect to the numeric operations in `num` */
def sum[B >: A](implicit num: Numeric[B]): B = {
var acc = num.zero
for (x <- self) acc = num.plus(acc, x)
acc
}
/** Returns the product of all elements with respect to the numeric operations in `num` */
def product[B >: A](implicit num: Numeric[B]): B = {
var acc = num.one
for (x <- self) acc = num.times(acc, x)
acc
}
/** Returns the minimal element with respect to the given ordering `cmp` */
def min[B >: A](implicit cmp: Ordering[B]): A = {
require(!self.isEmpty, "<empty>.min")
var acc = self.head
for (x <- self)
if (cmp.lt(x, acc)) acc = x
acc
}
/** Returns the maximal element with respect to the given ordering `cmp` */
def max[B >: A](implicit cmp: Ordering[B]): A = {
require(!self.isEmpty, "<empty>.max")
var acc = self.head
for (x <- self)
if (cmp.gt(x, acc)) acc = x
acc
}
/** The first element of this traversable.
*
* @note Might return different results for different runs, unless this traversable is ordered
* @throws Predef.NoSuchElementException if the traversable is empty.
*/
def head: A = {
var result: () => A = () => throw new NoSuchElementException
breakable {
for (x <- this) {
result = () => x
break
}
}
result()
}
/** Returns as an option the first element of this traversable
* or <code>None</code> if traversable is empty.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def headOption: Option[A] = if (isEmpty) None else Some(head)
/** a traversable consisting of all elements of this traversable
* except the first one.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def tail: Repr = {
require(!self.isEmpty, "<empty>.tail")
drop(1)
}
/** The last element of this traversable.
*
* @throws Predef.NoSuchElementException if the traversable is empty.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def last: A = {
var lst = head
for (x <- this)
lst = x
lst
}
/** Returns as an option the last element of this traversable or
* <code>None</code> if traversable is empty.
*
* @return the last element as an option.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def lastOption: Option[A] = if (isEmpty) None else Some(last)
/** a traversable consisting of all elements of this traversable except the last one.
* @throws Predef.UnsupportedOperationException if the stream is empty.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def init: Repr = {
if (isEmpty) throw new UnsupportedOperationException("empty.init")
var lst = head
var follow = false
val b = newBuilder
for (x <- this) {
if (follow) b += lst
else follow = true
lst = x
}
b.result
}
/** Return a traversable consisting only of the first <code>n</code>
* elements of this traversable, or else the whole traversable, if it has less
* than <code>n</code> elements.
*
* @param n the number of elements to take
* @note Might return different results for different runs, unless this traversable is ordered
*/
def take(n: Int): Repr = {
val b = newBuilder
var i = 0
breakable {
for (x <- this) {
if (i >= n) break
b += x
i += 1
}
}
b.result
}
/** Returns this traversable without its <code>n</code> first elements
* If this traversable has less than <code>n</code> elements, the empty
* traversable is returned.
*
* @param n the number of elements to drop
* @return the new traversable
* @note Might return different results for different runs, unless this traversable is ordered
*/
def drop(n: Int): Repr = {
val b = newBuilder
var i = 0
for (x <- this) {
if (i >= n) b += x
i += 1
}
b.result
}
/** A sub-traversable starting at index `from`
* and extending up to (but not including) index `until`.
*
* @note c.slice(from, to) is equivalent to (but possibly more efficient than)
* c.drop(from).take(to - from)
*
* @param from The index of the first element of the returned subsequence
* @param until The index of the element following the returned subsequence
* @note Might return different results for different runs, unless this traversable is ordered
*/
def slice(from: Int, until: Int): Repr = {
val b = newBuilder
var i = 0
breakable {
for (x <- this) {
if (i >= from) b += x
i += 1
if (i == until) break
}
}
b.result
}
/** Returns the longest prefix of this traversable whose elements satisfy
* the predicate <code>p</code>.
*
* @param p the test predicate.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def takeWhile(p: A => Boolean): Repr = {
val b = newBuilder
breakable {
for (x <- this) {
if (!p(x)) break
b += x
}
}
b.result
}
/** Returns the longest suffix of this traversable whose first element
* does not satisfy the predicate <code>p</code>.
*
* @param p the test predicate.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def dropWhile(p: A => Boolean): Repr = {
val b = newBuilder
var go = false
for (x <- this) {
if (!p(x)) go = true
if (go) b += x
}
b.result
}
/** Returns a pair consisting of the longest prefix of the traversable whose
* elements all satisfy the given predicate, and the rest of the traversable.
*
* @param p the test predicate
* @return a pair consisting of the longest prefix of the traversable whose
* elements all satisfy <code>p</code>, and the rest of the traversable.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def span(p: A => Boolean): (Repr, Repr) = {
val l, r = newBuilder
var toLeft = true
for (x <- this) {
toLeft = toLeft && p(x)
(if (toLeft) l else r) += x
}
(l.result, r.result)
}
/** Split the traversable at a given point and return the two parts thus
* created.
*
* @param n the position at which to split
* @return a pair of traversables composed of the first <code>n</code>
* elements, and the other elements.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def splitAt(n: Int): (Repr, Repr) = {
val l, r = newBuilder
var i = 0
for (x <- this) {
(if (i < n) l else r) += x
i += 1
}
(l.result, r.result)
}
/** Copy all elements of this traversable to a given buffer
* @note Will not terminate for infinite-sized collections.
* @param dest The buffer to which elements are copied
*/
def copyToBuffer[B >: A](dest: Buffer[B]) {
for (x <- this) dest += x
}
/** Fills the given array <code>xs</code> with at most `len` elements of
* this traversable starting at position `start`.
* Copying will stop once either the end of the current traversable is reached or
* `len` elements have been copied or the end of the array is reached.
*
* @note Will not terminate for infinite-sized collections.
* @param xs the array to fill.
* @param start starting index.
* @param len number of elements to copy
*/
def copyToArray[B >: A](xs: Array[B], start: Int, len: Int) {
var i = start
val end = (start + len) min xs.length
breakable {
for (x <- this) {
if (i >= end) break
xs(i) = x
i += 1
}
}
}
/** Fills the given array <code>xs</code> with the elements of
* this traversable starting at position <code>start</code>
* until either the end of the current traversable or the end of array `xs` is reached.
*
* @note Will not terminate for infinite-sized collections.
* @param xs the array to fill.
* @param start starting index.
* @pre the array must be large enough to hold all elements.
*/
def copyToArray[B >: A](xs: Array[B], start: Int) {
copyToArray(xs, start, xs.length - start)
}
/** Converts this traversable to a fresh Array containing all elements.
* @note Will not terminate for infinite-sized collections.
*/
def toArray[B >: A : ClassManifest]: Array[B] = {
val result = new Array[B](size)
copyToArray(result, 0)
result
}
/** Returns a list with all elements of this traversable object.
* @note Will not terminate for infinite-sized collections.
*/
def toList: List[A] = (new ListBuffer[A] ++= thisCollection).toList
/** Returns a traversable with all elements in this traversable object.
* @note Will not terminate for infinite-sized collections.
*/
def toIterable: Iterable[A] = toStream
/** Returns a sequence with all elements in this traversable object.
* @note Will not terminate for infinite-sized collections.
*/
def toSequence: Sequence[A] = toList
/** Returns a vector with all elements in this traversable object.
* @note Will not terminate for infinite-sized collections.
*/
def toVector[B >: A]: mutable.Vector[B] = (new ArrayBuffer[B] ++= thisCollection)
/** Returns a stream with all elements in this traversable object.
*/
def toStream: Stream[A] = toList.toStream
/** Returns a set with all unique elements in this traversable object.
*/
@experimental
def toSet[B >: A]: immutable.Set[B] = immutable.Set() ++ thisCollection
/** Returns a string representation of this traversable object. The resulting string
* begins with the string <code>start</code> and is finished by the string
* <code>end</code>. Inside, the string representations of elements (w.r.t.
* the method <code>toString()</code>) are separated by the string
* <code>sep</code>.
*
* @ex <code>List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"</code>
* @param start starting string.
* @param sep separator string.
* @param end ending string.
* @return a string representation of this traversable object.
*/
def mkString(start: String, sep: String, end: String): String =
addString(new StringBuilder(), start, sep, end).toString
/** Returns a string representation of this traversable object. The string
* representations of elements (w.r.t. the method <code>toString()</code>)
* are separated by the string <code>sep</code>.
*
* @param sep separator string.
* @return a string representation of this traversable object.
*/
def mkString(sep: String): String =
addString(new StringBuilder(), sep).toString
/** Returns a string representation of this traversable object. The string
* representations of elements (w.r.t. the method <code>toString()</code>)
* follow each other without any separator string.
*/
def mkString: String =
addString(new StringBuilder()).toString
/** Write all elements of this traversable into given string builder.
* The written text begins with the string <code>start</code> and is finished by the string
* <code>end</code>. Inside, the string representations of elements (w.r.t.
* the method <code>toString()</code>) are separated by the string
* <code>sep</code>.
*/
def addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder = {
b append start
var first = true
for (x <- this) {
if (first) first = false
else b append sep
b append x
}
b append end
}
/** Write all elements of this string into given string builder.
* The string representations of elements (w.r.t. the method <code>toString()</code>)
* are separated by the string <code>sep</code>.
*/
def addString(b: StringBuilder, sep: String): StringBuilder = addString(b, "", sep, "")
/** Write all elements of this string into given string builder without using
* any separator between consecutive elements.
*/
def addString(b: StringBuilder): StringBuilder = addString(b, "")
override def toString = mkString(stringPrefix + "(", ", ", ")")
/** Defines the prefix of this object's <code>toString</code> representation.
*/
def stringPrefix : String = {
var string = repr.asInstanceOf[AnyRef].getClass.getName
val idx1 = string.lastIndexOf('.' : Int)
if (idx1 != -1) string = string.substring(idx1 + 1)
val idx2 = string.indexOf('$')
if (idx2 != -1) string = string.substring(0, idx2)
string
}
/** Creates a view of this traversable @see TraversableView
*/
def view = new TraversableView[A, Repr] {
protected lazy val underlying = self.repr
override def foreach[B](f: A => B) = self foreach f
}
/** A sub-traversable starting at index `from`
* and extending up to (but not including) index `until`.
*
* @param from The index of the first element of the slice
* @param until The index of the element following the slice
* @note The difference between `view` and `slice` is that `view` produces
* a view of the current traversable, whereas `slice` produces a new traversable.
*
* @note Might return different results for different runs, unless this traversable is ordered
* @note view(from, to) is equivalent to view.slice(from, to)
*/
def view(from: Int, until: Int): TraversableView[A, Repr] = view.slice(from, until)
}

View File

@ -0,0 +1,274 @@
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2006-2009, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
// $Id: VectorTemplate.scala 18646 2009-09-04 16:56:11Z odersky $
package scala.collection
import generic._
import mutable.ArrayBuffer
/** Sequences that support O(1) element access and O(1) length computation.
* This class does not add any methods to Sequence but overrides several
* methods with optimized implementations.
*
* @author Sean McDirmid
* @author Martin Odersky
* @version 2.8
*/
trait VectorLike[+A, +Repr] extends SequenceLike[A, Repr] { self =>
override protected[this] def thisCollection: Vector[A] = this.asInstanceOf[Vector[A]]
override protected[this] def toCollection(repr: Repr): Vector[A] = repr.asInstanceOf[Vector[A]]
// Overridden methods from IterableTemplate
/** The iterator returned by the iterator method
*/
@serializable @SerialVersionUID(1756321872811029277L)
protected class Elements(start: Int, end: Int) extends BufferedIterator[A] {
private var i = start
def hasNext: Boolean = i < end
def next: A =
if (i < end) {
val x = self(i)
i += 1
x
} else Iterator.empty.next
def head =
if (i < end) self(i) else Iterator.empty.next
/** drop is overridden to enable fast searching in the middle of random access sequences */
override def drop(n: Int): Iterator[A] =
if (n > 0) new Elements(start + n, end) else this
/** take is overridden to be symmetric to drop */
override def take(n: Int): Iterator[A] =
if (n <= 0) Iterator.empty.buffered
else if (start + n < end) new Elements(start, start + n)
else this
}
override def iterator: Iterator[A] = new Elements(0, length)
override def isEmpty: Boolean = { length == 0 }
override def foreach[U](f: A => U): Unit = {
var i = 0
val len = length
while (i < len) { f(this(i)); i += 1 }
}
override def forall(p: A => Boolean): Boolean = prefixLength(p(_)) == length
override def exists(p: A => Boolean): Boolean = prefixLength(!p(_)) != length
override def find(p: A => Boolean): Option[A] = {
val i = prefixLength(!p(_))
if (i < length) Some(this(i)) else None
}
private def foldl[B](start: Int, z: B, op: (B, A) => B): B = {
var i = start
val len = length
var result = z
while (i < len) {
result = op(result, this(i))
i += 1
}
result
}
private def foldr[B](start: Int, len: Int, z: B, op: (A, B) => B): B =
if (start == len) z
else op(this(start), foldr(start + 1, len, z, op))
override def foldLeft[B](z: B)(op: (B, A) => B): B =
foldl(0, z, op)
override def foldRight[B](z: B)(op: (A, B) => B): B =
foldr(0, length, z, op)
override def reduceLeft[B >: A](op: (B, A) => B): B =
if (length > 0) foldl(1, this(0), op) else super.reduceLeft(op)
override def reduceRight[B >: A](op: (A, B) => B): B =
if (length > 0) foldr(0, length - 1, this(length - 1), op) else super.reduceRight(op)
override def zip[A1 >: A, B, That](that: Iterable[B])(implicit bf: BuilderFactory[(A1, B), That, Repr]): That = that match {
case that: Vector[_] =>
val b = bf(repr)
var i = 0
val len = this.length min that.length
b.sizeHint(len)
while (i < len) {
b += ((this(i), that(i).asInstanceOf[B]))
i += 1
}
b.result
case _ =>
super.zip[A1, B, That](that)(bf)
}
override def zipWithIndex[A1 >: A, That](implicit bf: BuilderFactory[(A1, Int), That, Repr]): That = {
val b = bf(repr)
val len = length
b.sizeHint(len)
var i = 0
while (i < len) {
b += ((this(i), i))
i += 1
}
b.result
}
override def slice(from: Int, until: Int): Repr = {
var i = from max 0
val end = until min length
val b = newBuilder
b.sizeHint(end - i)
while (i < end) {
b += this(i)
i += 1
}
b.result
}
override def head: A = if (isEmpty) super.head else this(0)
override def tail: Repr = if (isEmpty) super.tail else slice(1, length)
override def last: A = if (length > 0) this(length - 1) else super.last
override def init: Repr = if (length > 0) slice(0, length - 1) else super.init
override def take(n: Int): Repr = slice(0, n)
override def drop(n: Int): Repr = slice(n, length)
override def takeRight(n: Int): Repr = slice(length - n, length)
override def dropRight(n: Int): Repr = slice(0, length - n)
override def splitAt(n: Int): (Repr, Repr) = (take(n), drop(n))
override def takeWhile(p: A => Boolean): Repr = take(prefixLength(p))
override def dropWhile(p: A => Boolean): Repr = drop(prefixLength(p))
override def span(p: A => Boolean): (Repr, Repr) = splitAt(prefixLength(p))
override def sameElements[B >: A](that: Iterable[B]): Boolean = that match {
case that: Vector[_] =>
val len = length
len == that.length && {
var i = 0
while (i < len && this(i) == that(i)) i += 1
i == len
}
case _ =>
super.sameElements(that)
}
override def copyToArray[B >: A](xs: Array[B], start: Int, len: Int) {
var i = 0
var j = start
val end = length min len min (xs.length - start)
while (i < end) {
xs(j) = this(i)
i += 1
j += 1
}
}
// Overridden methods from Sequence
override def lengthCompare(len: Int): Int = length - len
override def segmentLength(p: A => Boolean, from: Int): Int = {
val start = from
val len = length
var i = start
while (i < len && p(this(i))) i += 1
i - start
}
private def negLength(n: Int) = if (n == length) -1 else n
override def indexWhere(p: A => Boolean, from: Int): Int = {
val start = from max 0
negLength(start + segmentLength(!p(_), start))
}
override def lastIndexWhere(p: A => Boolean, end: Int): Int = {
var i = end
while (i >= 0 && !p(this(i))) i -= 1
i
}
override def reverse: Repr = {
val b = newBuilder
b.sizeHint(length)
var i = length
while (0 < i) {
i -= 1
b += this(i)
}
b.result
}
override def reverseIterator: Iterator[A] = new Iterator[A] {
private var i = self.length
def hasNext: Boolean = 0 < i
def next: A =
if (0 < i) {
i -= 1
self(i)
} else Iterator.empty.next
}
override def startsWith[B](that: Sequence[B], offset: Int): Boolean = that match {
case that: Vector[_] =>
var i = offset
var j = 0
val thisLen = length
val thatLen = that.length
while (i < thisLen && j < thatLen && this(i) == that(j)) {
i += 1
j += 1
}
j == thatLen
case _ =>
var i = offset
val thisLen = length
val thatElems = that.iterator
while (i < thisLen && thatElems.hasNext) {
if (this(i) != thatElems.next())
return false
i += 1
}
!thatElems.hasNext
}
override def endsWith[B](that: Sequence[B]): Boolean = that match {
case that: Vector[_] =>
var i = length - 1
var j = that.length - 1
(j <= i) && {
while (j >= 0) {
if (this(i) != that(j))
return false
i -= 1
j -= 1
}
true
}
case _ =>
super.endsWith(that)
}
override def view = new VectorView[A, Repr] {
protected lazy val underlying = self.repr
override def iterator = self.iterator
override def length = self.length
override def apply(idx: Int) = self.apply(idx)
}
override def view(from: Int, until: Int) = view.slice(from, until)
}

View File

@ -20,7 +20,7 @@ import scala.collection._
*/
trait Addable[A, +This <: Addable[A, This]] { self =>
protected def thisCollection: This
protected def repr: This
/** Creates a new collection with an additional element, unless the element is already present.
* @param elem the element to be added
@ -43,14 +43,14 @@ trait Addable[A, +This <: Addable[A, This]] { self =>
*
* @param elems the traversable object.
*/
def ++ (elems: Traversable[A]): This = (thisCollection /: elems) (_ + _)
def ++ (elems: Traversable[A]): This = (repr /: elems) (_ + _)
/** Adds a number of elements provided by an iterator
* and returns a new collection with the added elements.
*
* @param iter the iterator
*/
def ++ (iter: Iterator[A]): This = (thisCollection /: iter) (_ + _)
def ++ (iter: Iterator[A]): This = (repr /: iter) (_ + _)
}

View File

@ -118,11 +118,11 @@ trait BufferTemplate[A, +This <: BufferTemplate[A, This] with Buffer[A]]
/** Prepends a number of elements provided by an iterable object
* via its <code>iterator</code> method. The identity of the
* buffer is returned.(thisCollection /: elems) (_ plus _)
* buffer is returned.(repr /: elems) (_ plus _)
*
* @param iter the iterable object.
*/
def ++:(iter: Traversable[A]): This = { for (x <- iter) x +: this; thisCollection }
def ++:(iter: Traversable[A]): This = { for (x <- iter) x +: this; repr }
/** Prepends a number of elements provided by an iterator
* The identity of the buffer is returned.
@ -130,7 +130,7 @@ trait BufferTemplate[A, +This <: BufferTemplate[A, This] with Buffer[A]]
* @param iter the iterator
* @return the updated buffer.
*/
def ++:(iter: Iterator[A]): This = { for (x <- iter) x +: this; thisCollection }
def ++:(iter: Iterator[A]): This = { for (x <- iter) x +: this; repr }
/** Appends elements to this buffer.
*
@ -241,7 +241,7 @@ trait BufferTemplate[A, +This <: BufferTemplate[A, This] with Buffer[A]]
*/
@deprecated("Use += instead if you intend to add by side effect to an existing collection.\n"+
"Use `clone() ++=' if you intend to create a new collection.")
override def + (elem: A): This = { +=(elem); thisCollection }
override def + (elem: A): This = { +=(elem); repr }
/** Adds two or more elements to this collection and returns
* the collection itself.
@ -254,7 +254,7 @@ trait BufferTemplate[A, +This <: BufferTemplate[A, This] with Buffer[A]]
"Use `clone() ++=' if you intend to create a new collection.")
override def + (elem1: A, elem2: A, elems: A*): This = {
this += elem1 += elem2 ++= elems
thisCollection
repr
}
/** Adds a number of elements provided by a traversable object and returns
@ -266,7 +266,7 @@ trait BufferTemplate[A, +This <: BufferTemplate[A, This] with Buffer[A]]
"Use `clone() ++=` if you intend to create a new collection.")
override def ++(iter: Traversable[A]): This = {
for (elem <- iter) +=(elem)
thisCollection
repr
}
/** Adds a number of elements provided by an iterator and returns
@ -278,7 +278,7 @@ trait BufferTemplate[A, +This <: BufferTemplate[A, This] with Buffer[A]]
"Use `clone() ++=` if you intend to create a new collection.")
override def ++ (iter: Iterator[A]): This = {
for (elem <- iter) +=(elem)
thisCollection
repr
}
/** Removes a single element from this collection and returns
@ -288,7 +288,7 @@ trait BufferTemplate[A, +This <: BufferTemplate[A, This] with Buffer[A]]
*/
@deprecated("Use -= instead if you intend to remove by side effect from an existing collection.\n"+
"Use `clone() -=` if you intend to create a new collection.")
override def -(elem: A): This = { -=(elem); thisCollection }
override def -(elem: A): This = { -=(elem); repr }
/** Removes two or more elements from this collection and returns
* the collection itself.
@ -301,7 +301,7 @@ trait BufferTemplate[A, +This <: BufferTemplate[A, This] with Buffer[A]]
"Use `clone() -=` if you intend to create a new collection.")
override def -(elem1: A, elem2: A, elems: A*): This = {
this -= elem1 -= elem2 --= elems
thisCollection
repr
}
/** Removes a number of elements provided by a Traversable object and returns
@ -313,7 +313,7 @@ trait BufferTemplate[A, +This <: BufferTemplate[A, This] with Buffer[A]]
"Use `clone() --=` if you intend to create a new collection.")
override def --(iter: Traversable[A]): This = {
for (elem <- iter) -=(elem)
thisCollection
repr
}
/** Removes a number of elements provided by an iterator and returns
@ -325,7 +325,7 @@ trait BufferTemplate[A, +This <: BufferTemplate[A, This] with Buffer[A]]
"Use `clone() --=` if you intend to create a new collection.")
override def --(iter: Iterator[A]): This = {
for (elem <- iter) -=(elem)
thisCollection
repr
}
}

View File

@ -27,14 +27,14 @@ trait DoubleLinkedListTemplate[A, This >: Null <: LinearSequence[A] with DoubleL
override def append(that: This): Unit =
if (next eq null) {
next = that
if (that ne null) that.prev = thisCollection
if (that ne null) that.prev = repr
} else
next.append(that)
override def insert(that: This): Unit = if (that ne null) {
that.append(next)
next = that
that.prev = thisCollection
that.prev = repr
}
def remove() {

View File

@ -71,7 +71,7 @@ self =>
* @param elems the traversable object.
*/
override def ++[B1 >: B](elems: Traversable[(A, B1)]): immutable.Map[A, B1] =
((thisCollection: immutable.Map[A, B1]) /: elems) (_ + _)
((repr: immutable.Map[A, B1]) /: elems) (_ + _)
/** Adds a number of elements provided by an iterator
* and returns a new collection with the added elements.
@ -79,7 +79,7 @@ self =>
* @param iter the iterator
*/
override def ++[B1 >: B] (iter: Iterator[(A, B1)]): immutable.Map[A, B1] =
((thisCollection: immutable.Map[A, B1]) /: iter) (_ + _)
((repr: immutable.Map[A, B1]) /: iter) (_ + _)
/** This function transforms all the values of mappings contained
* in this map with function <code>f</code>.
@ -88,7 +88,7 @@ self =>
* @return the updated map
*/
def transform[C, That](f: (A, B) => C)(implicit bf: BuilderFactory[(A, C), That, This]): That = {
val b = bf(thisCollection)
val b = bf(repr)
for ((key, value) <- this) b += ((key, f(key, value)))
b.result
}
@ -104,7 +104,7 @@ self =>
* with a negated predicate instead.
*/
override def filterNot(p: ((A, B)) => Boolean): This = {
var res: This = thisCollection
var res: This = repr
for (kv <- this)
if (p(kv)) res = (res - kv._1).asInstanceOf[This] // !!! concrete overrides abstract problem
res

View File

@ -41,252 +41,6 @@ import scala.util.control.Breaks._
* @author Martin Odersky
* @version 2.8
*/
trait IterableTemplate[+A, +This <: IterableTemplate[A, This] with Iterable[A]] extends TraversableTemplate[A, This] { self =>
/** Creates a new iterator over all elements contained in this
* iterable object.
*
* @return the new iterator
*/
def iterator: Iterator[A]
@deprecated("use `iterator' instead")
def elements = iterator
/** Apply a function <code>f</code> to all elements of this
* traversable object.
*
* @param f A function that is applied for its side-effect to every element.
* The result (of arbitrary type U) of function `f` is discarded.
*
* @note This method underlies the implementation of most other bulk operations.
* Implementing `foreach` with `iterator` is often suboptimal.
* So `foreach` should be overridden in concrete collection classes if a more
* efficient implementation is available.
*/
def foreach[U](f: A => U): Unit = this.iterator.foreach(f)
/** Does this iterable contain no elements?
*/
override def isEmpty: Boolean = !this.iterator.hasNext
/** Combines the elements of this iterable together using the binary
* function <code>f</code>, from right to left, and starting with
* the value <code>z</code>.
*
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this iterable is ordered, or
* the operator is associative and commutative.
* @return <code>f(a<sub>0</sub>, f(a<sub>1</sub>, f(..., f(a<sub>n</sub>, z)...)))</code>
* if the iterable is <code>[a<sub>0</sub>, a1, ..., a<sub>n</sub>]</code>.
*/
override def foldRight[B](z: B)(op: (A, B) => B): B =
this.iterator.foldRight(z)(op)
/** Combines the elements of this iterable object together using the binary
* operator <code>op</code>, from right to left
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this iterable is ordered, or
* the operator is associative and commutative.
* @param op The operator to apply
*
* @return <code>a<sub>0</sub> op (... op (a<sub>n-1</sub> op a<sub>n</sub>)...)</code>
* if the iterable object has elements <code>a<sub>0</sub>, a<sub>1</sub>, ...,
* a<sub>n</sub></code>.
*
* @throws Predef.UnsupportedOperationException if the iterator is empty.
*/
override def reduceRight[B >: A](op: (A, B) => B): B =
this.iterator.reduceRight(op)
/** The iterable itself */
override def toIterable: Iterable[A] = thisCollection
/** The first element of this iterable.
*
* @note Might return different results for different runs, unless this iterable is ordered
* @throws Predef.NoSuchElementException if the iterable is empty.
*/
override def head: A =
if (isEmpty)
throw new NoSuchElementException
else
this.iterator.next
/** Returns the rightmost <code>n</code> elements from this iterable.
*
* @param n the number of elements to take
* @note Might return different results for different runs, unless this iterable is ordered
*/
def takeRight(n: Int): This = {
val b = newBuilder
val lead = this.iterator drop n
var go = false
for (x <- this) {
if (lead.hasNext) lead.next
else go = true
if (go) b += x
}
b.result
}
/** Returns the iterable wihtout its rightmost <code>n</code> elements.
*
* @param n the number of elements to take
* @note Might return different results for different runs, unless this iterable is ordered
*/
def dropRight(n: Int): This = {
val b = newBuilder
val lead = iterator drop n
breakable {
for (x <- this) {
if (!lead.hasNext) break
lead.next
b += x
}
}
b.result
}
/** Returns an iterable formed from this iterable and another iterable
* by combining corresponding elements in pairs.
* If one of the two iterables is longer than the other, its remaining elements are ignored.
* @param that The iterable providing the second half of each result pair
*/
def zip[A1 >: A, B, That](that: Iterable[B])(implicit bf: BuilderFactory[(A1, B), That, This]): That = {
val b = bf(thisCollection)
val these = this.iterator
val those = that.iterator
while (these.hasNext && those.hasNext)
b += ((these.next, those.next))
b.result
}
/** Returns a iterable formed from this iterable and the specified iterable
* <code>that</code> by associating each element of the former with
* the element at the same position in the latter.
*
* @param that iterable <code>that</code> may have a different length
* as the self iterable.
* @param thisElem element <code>thisElem</code> is used to fill up the
* resulting iterable if the self iterable is shorter than
* <code>that</code>
* @param thatElem element <code>thatElem</code> is used to fill up the
* resulting iterable if <code>that</code> is shorter than
* the self iterable
* @return <code>Sequence((a<sub>0</sub>,b<sub>0</sub>), ...,
* (a<sub>n</sub>,b<sub>n</sub>), (elem,b<sub>n+1</sub>),
* ..., {elem,b<sub>m</sub>})</code>
* when <code>[a<sub>0</sub>, ..., a<sub>n</sub>] zip
* [b<sub>0</sub>, ..., b<sub>m</sub>]</code> is
* invoked where <code>m &gt; n</code>.
*
*/
def zipAll[B, A1 >: A, That](that: Iterable[B], thisElem: A1, thatElem: B)(implicit bf: BuilderFactory[(A1, B), That, This]): That = {
val b = bf(thisCollection)
val these = this.iterator
val those = that.iterator
while (these.hasNext && those.hasNext)
b += ((these.next, those.next))
while (these.hasNext)
b += ((these.next, thatElem))
while (those.hasNext)
b += ((thisElem, those.next))
b.result
}
/** Zips this iterable with its indices (startiong from 0).
*/
def zipWithIndex[A1 >: A, That](implicit bf: BuilderFactory[(A1, Int), That, This]): That = {
val b = bf(thisCollection)
var i = 0
for (x <- this) {
b += ((x, i))
i +=1
}
b.result
}
/** Sort the iterable according to the comparison function
* <code>&lt;(e1: a, e2: a) =&gt; Boolean</code>,
* which should be true iff <code>e1</code> is smaller than
* <code>e2</code>.
* The sort is stable. That is elements that are equal wrt `lt` appear in the
* same order in the sorted sequence as in the original.
*
* @param lt the comparison function
* @return an iterable sorted according to the comparison function
* <code>&lt;(e1: a, e2: a) =&gt; Boolean</code>.
* @ex <pre>
* List("Steve", "Tom", "John", "Bob")
* .sortWith((e1, e2) => (e1 compareTo e2) &lt; 0) =
* List("Bob", "John", "Steve", "Tom")</pre>
*/
def sortWith(lt: (A, A) => Boolean)(implicit m: ClassManifest[A @uncheckedVariance]): This = {
// !!! can we supply a default argument to m: ClassManifest ?
val arr = toArray
java.util.Arrays.sort(arr, Ordering fromLessThan lt)
val b = newBuilder
for (x <- arr) b += x
b.result
}
/** Checks if the other iterable object contains the same elements as this one.
*
* @note will not terminate for infinite-sized iterables.
* @param that the other iterable
* @return true, iff both iterables contain the same elements in the same order.
* @note Might return different results for different runs, unless this iterable is ordered
*/
def sameElements[B >: A](that: Iterable[B]): Boolean = {
val these = this.iterator
val those = that.iterator
while (these.hasNext && those.hasNext)
if (these.next != those.next)
return false
!these.hasNext && !those.hasNext
}
/** Returns a stream with all elements in this traversable object.
*/
override def toStream: Stream[A] = iterator.toStream
/** Creates a view of this iterable @see IterableView
*/
override def view = new IterableView[A, This] {
protected lazy val underlying = self.thisCollection
override def iterator = self.iterator
}
/** A sub-iterable view starting at index `from`
* and extending up to (but not including) index `until`.
*
* @param from The index of the first element of the slice
* @param until The index of the element following the slice
* @note The difference between `view` and `slice` is that `view` produces
* a view of the current iterable, whereas `slice` produces a new iterable.
*
* @note Might return different results for different runs, unless this iterable is ordered
* @note view(from, to) is equivalent to view.slice(from, to)
*/
override def view(from: Int, until: Int) = view.slice(from, until)
protected def anyEq(that: Any) = this eq that.asInstanceOf[AnyRef]
@deprecated("use `head' instead") def first: A = head
/** <code>None</code> if traversable is empty. */
@deprecated("use `headOption' instead") def firstOption: Option[A] = headOption
@deprecated("use `toSequence' instead") def toSeq: Sequence[A] = toSequence
/**
* returns a projection that can be used to call non-strict <code>filter</code>,
* <code>map</code>, and <code>flatMap</code> methods that build projections
* of the collection.
*/
@deprecated("use `view' instead") def projection = view
}
trait IterableTemplate[+A, +This <: IterableTemplate[A, This] with Iterable[A]]
extends TraversableTemplate[A, This]
with IterableLike[A, This]

View File

@ -19,7 +19,7 @@ import TraversableView.NoBuilder
* @author Martin Odersky
* @version 2.8
*/
trait IterableView[+A, +Coll <: Iterable[_]] extends IterableViewTemplate[A, Coll, IterableView[A, Coll]]
trait IterableView[+A, +Coll] extends IterableViewTemplate[A, Coll, IterableView[A, Coll]]
object IterableView {
type Coll = TraversableView[_, C] forSome {type C <: Traversable[_]}

View File

@ -20,7 +20,7 @@ import TraversableView.NoBuilder
* @version 2.8
*/
trait IterableViewTemplate[+A,
+Coll <: Iterable[_],
+Coll,
+This <: IterableView[A, Coll] with IterableViewTemplate[A, Coll, This]]
extends Iterable[A] with IterableTemplate[A, This] with TraversableView[A, Coll] with TraversableViewTemplate[A, Coll, This]
{ self =>
@ -71,7 +71,7 @@ extends Iterable[A] with IterableTemplate[A, This] with TraversableView[A, Coll]
override def zip[A1 >: A, B, That](that: Iterable[B])(implicit bf: BuilderFactory[(A1, B), That, This]): That = {
newZipped(that).asInstanceOf[That]
// was: val b = bf(thisCollection)
// was: val b = bf(repr)
// if (b.isInstanceOf[NoBuilder[_]]) newZipped(that).asInstanceOf[That]
// else super.zip[A1, B, That](that)(bf)
}

View File

@ -27,349 +27,6 @@ import scala.util.control.Breaks._
* @author Matthias Zenger
* @version 1.0, 16/07/2003
*/
trait LinearSequenceTemplate[+A, +This <: LinearSequenceTemplate[A, This] with LinearSequence[A]] extends SequenceTemplate[A, This] { self =>
/** Abstract method to be implemented in a subclass */
def isEmpty: Boolean
/** Abstract method to be implemented in a subclass */
def head: A
/** Abstract method to be implemented in a subclass */
def tail: This
/** Returns the number of elements in the linear sequence.
*/
def length: Int = {
var these = self
var len = 0
while (!these.isEmpty) {
len += 1
these = these.tail
}
len
}
/** Returns the <code>n</code>-th element of this linear sequence. The first element
* (head of the linear sequence) is at position 0.
*
* @param n index of the element to return
* @return the element at position <code>n</code> in this linear sequence.
* @throws Predef.NoSuchElementException if the linear sequence is too short.
*/
def apply(n: Int): A = drop(n).head
/** Returns the elements in the sequence as an iterator
*/
override def iterator: Iterator[A] = new Iterator[A] {
var these = self
def hasNext: Boolean = !these.isEmpty
def next: A =
if (hasNext) {
val result = these.head; these = these.tail; result
} else Iterator.empty.next
override def toList: List[A] = these.toList
}
/** Apply the given function <code>f</code> to each element of this linear sequence
* (while respecting the order of the elements).
*
* @param f the treatment to apply to each element.
*/
override def foreach[B](f: A => B) {
var these = this
while (!these.isEmpty) {
f(these.head)
these = these.tail
}
}
/** Tests if the predicate <code>p</code> is satisfied by all elements
* in this list.
*
* @param p the test predicate.
* @return <code>true</code> iff all elements of this list satisfy the
* predicate <code>p</code>.
*/
override def forall(p: A => Boolean): Boolean = {
var these = this
while (!these.isEmpty) {
if (!p(these.head)) return false
these = these.tail
}
true
}
/** Tests the existence in this list of an element that satisfies the
* predicate <code>p</code>.
*
* @param p the test predicate.
* @return <code>true</code> iff there exists an element in this list that
* satisfies the predicate <code>p</code>.
*/
override def exists(p: A => Boolean): Boolean = {
var these = this
while (!these.isEmpty) {
if (p(these.head)) return true
these = these.tail
}
false
}
/** Count the number of elements in the iterable which satisfy a predicate.
*
* @param p the predicate for which to count
* @return the number of elements satisfying the predicate <code>p</code>.
*/
override def count(p: A => Boolean): Int = {
var these = this
var cnt = 0
while (!these.isEmpty) {
if (p(these.head)) cnt += 1
these = these.tail
}
cnt
}
/** Find and return the first element of the list satisfying a
* predicate, if any.
*
* @param p the predicate
* @return the first element in the list satisfying <code>p</code>,
* or <code>None</code> if none exists.
*/
override def find(p: A => Boolean): Option[A] = {
var these = this
while (!these.isEmpty) {
if (p(these.head)) return Some(these.head)
these = these.tail
}
None
}
/** Combines the elements of this list together using the binary
* function <code>f</code>, from left to right, and starting with
* the value <code>z</code>.
*
* @return <code>f(... (f(f(z, a<sub>0</sub>), a<sub>1</sub>) ...),
* a<sub>n</sub>)</code> if the list is
* <code>[a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub>]</code>.
*/
override def foldLeft[B](z: B)(f: (B, A) => B): B = {
var acc = z
var these = this
while (!these.isEmpty) {
acc = f(acc, these.head)
these = these.tail
}
acc
}
/** Combines the elements of this list together using the binary
* function <code>f</code>, from right to left, and starting with
* the value <code>z</code>.
*
* @return <code>f(a<sub>0</sub>, f(a<sub>1</sub>, f(..., f(a<sub>n</sub>, z)...)))</code>
* if the list is <code>[a<sub>0</sub>, a1, ..., a<sub>n</sub>]</code>.
*/
override def foldRight[B](z: B)(f: (A, B) => B): B =
if (this.isEmpty) z
else f(head, tail.foldRight(z)(f))
/** Combines the elements of this list together using the binary
* operator <code>op</code>, from left to right.
*
* @param op The operator to apply
* @return <code>op(... op(a<sub>0</sub>,a<sub>1</sub>), ..., a<sub>n</sub>)</code>
if the list has elements
* <code>a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub></code>.
* @throws Predef.UnsupportedOperationException if the list is empty.
*/
override def reduceLeft[B >: A](f: (B, A) => B): B =
if (isEmpty) throw new UnsupportedOperationException("empty.reduceLeft")
else tail.foldLeft[B](head)(f)
/** Combines the elements of this iterable object together using the binary
* operator <code>op</code>, from right to left.
*
* @note Will not terminate for infinite-sized collections.
* @param op The operator to apply
*
* @return <code>a<sub>0</sub> op (... op (a<sub>n-1</sub> op a<sub>n</sub>)...)</code>
* if the iterable object has elements <code>a<sub>0</sub>, a<sub>1</sub>, ...,
* a<sub>n</sub></code>.
*
* @throws Predef.UnsupportedOperationException if the iterator is empty.
*/
override def reduceRight[B >: A](op: (A, B) => B): B =
if (isEmpty) throw new UnsupportedOperationException("Nil.reduceRight")
else if (tail.isEmpty) head
else op(head, tail.reduceRight(op))
/** The last element of this linear sequence.
*
* @throws Predef.NoSuchElementException if the linear sequence is empty.
*/
override def last: A = {
if (isEmpty) throw new NoSuchElementException
var these = this
var nx = these.tail
while (!nx.isEmpty) {
these = nx
nx = nx.tail
}
these.head
}
override def take(n: Int): This = {
val b = newBuilder
var i = 0
var these = this
while (!these.isEmpty && i < n) {
i += 1
b += these.head
these = these.tail
}
b.result
}
override def drop(n: Int): This = {
var these: This = thisCollection
var count = n
while (!these.isEmpty && count > 0) {
these = these.tail
count -= 1
}
these
}
/** Returns the rightmost <code>n</code> elements from this iterable.
* @param n the number of elements to take
*/
override def dropRight(n: Int): This = {
val b = newBuilder
var these = this
var lead = this drop n
while (!lead.isEmpty) {
b += these.head
these = these.tail
lead = lead.tail
}
b.result
}
/** Returns a pair consisting of the longest prefix of the linear sequence whose
* elements all satisfy the given predicate, and the rest of the linear sequence.
*
* @param p the test predicate
*/
override def span(p: A => Boolean): (This, This) = {
var these: This = thisCollection
val b = newBuilder
while (!these.isEmpty && p(these.head)) {
b += these.head
these = these.tail
}
(b.result, these)
}
/** Returns true iff the other linear sequence contains the same elements as this one.
*
* @note will not terminate for two infinite-sized linear sequences.
* @param that the other linear sequence
*/
override def sameElements[B >: A](that: Iterable[B]): Boolean = that match {
case that1: LinearSequence[_] =>
// !!! todo: do the LinearSequence methods need to assume null might be
// used to indicate termination or not? The fact that null is checked for
// here would seem to indicate "yes", but the comment in LinkedListTemplate is
// !!! todo: integrate with LinearSequence, need to drop null then.
// which contradicts the need for null checking here in two different ways:
// 1) LinkedList does not currently inherit from LinearSequenceTemplate
// 2) According to that comment, if it does it will stop using null
// (but what is the alternative?)
def isEmpty(xs: LinearSequence[_]) = xs == null || xs.isEmpty
var these = thisCollection
var those = that1
while (!isEmpty(these) && !isEmpty(those) && these.head == those.head) {
these = these.tail
those = those.tail
}
isEmpty(these) && isEmpty(those)
case _ => super.sameElements(that)
}
// Overridden methods from Sequence
/** Result of comparing <code>length</code> with operand <code>len</code>.
* returns <code>x</code> where
* <code>x &lt; 0</code> iff <code>this.length &lt; len</code>
* <code>x == 0</code> iff <code>this.length == len</code>
* <code>x &gt; 0</code> iff <code>this.length &gt; len</code>.
*/
override def lengthCompare(len: Int): Int = {
var i = 0
var these = self
while (!these.isEmpty && i <= len) {
i += 1
these = these.tail
}
i - len
}
/** Is this partial function defined for the index <code>x</code>?
*/
override def isDefinedAt(x: Int): Boolean = x >= 0 && lengthCompare(x) > 0
/** Returns length of longest segment starting from a start index `from`
* such that every element of the segment satisfies predicate `p`.
* @note may not terminate for infinite-sized collections.
* @param p the predicate
* @param from the start index
*/
override def segmentLength(p: A => Boolean, from: Int): Int = {
var i = 0
var these = this drop from
while (!these.isEmpty && p(these.head)) {
i += 1
these = these.tail
}
i
}
/** Returns index of the first element starting from a start index
* satisying a predicate, or -1, if none exists.
*
* @note may not terminate for infinite-sized linear sequences.
* @param p the predicate
* @param from the start index
*/
override def indexWhere(p: A => Boolean, from: Int): Int = {
var i = from
var these = this drop from
while (!these.isEmpty && !p(these.head)) {
i += 1
these = these.tail
}
if (these.isEmpty) -1 else i
}
/** Returns index of the last element satisying a predicate, or -1, if none exists.
*
* @param p the predicate
* @return the index of the last element satisfying <code>p</code>,
* or -1 if such an element does not exist
*/
override def lastIndexWhere(p: A => Boolean, end: Int): Int = {
var i = 0
var these = this
var last = -1
while (!these.isEmpty && i <= end) {
if (p(these.head)) last = i
these = these.tail
i += 1
}
last
}
trait LinearSequenceTemplate[+A, +This <: LinearSequenceTemplate[A, This] with LinearSequence[A]] extends LinearSequenceLike[A, This] {
self: This =>
}

View File

@ -238,7 +238,7 @@ self =>
* @param elems the traversable object.
*/
def ++[B1 >: B](elems: Traversable[(A, B1)]): Map[A, B1] =
((thisCollection: Map[A, B1]) /: elems) (_ + _)
((repr: Map[A, B1]) /: elems) (_ + _)
/** Adds a number of elements provided by an iterator
* and returns a new collection with the added elements.
@ -246,7 +246,7 @@ self =>
* @param iter the iterator
*/
def ++[B1 >: B] (iter: Iterator[(A, B1)]): Map[A, B1] =
((thisCollection: Map[A, B1]) /: iter) (_ + _)
((repr: Map[A, B1]) /: iter) (_ + _)
/** Creates a string representation for this map.
*
@ -256,6 +256,7 @@ self =>
this.iterator.map { case (k, v) => k+" -> "+v }.addString(b, start, sep, end)
/** Defines the prefix of this object's <code>toString</code> representation.
* !!! todo: remove stringPrefix overrides where possible
*/
override def stringPrefix: String = "Map"
@ -264,7 +265,6 @@ self =>
override def toString = super[IterableTemplate].toString
override def hashCode() = this map (_.hashCode) sum
override def canEqualCollection(that: Any) = that.isInstanceOf[Map[_, _]]
/** Compares two maps structurally; i.e. checks if all mappings
* contained in this map are also contained in the other map,
@ -274,10 +274,23 @@ self =>
* @return <code>true</code> iff both maps contain exactly the
* same mappings.
*/
override def equals(that: Any): Boolean =
anyEq(that) || (cond(that) {
case x: Map[A, _] if x.canEqualCollection(this) && size == x.size =>
try this forall { case (k, v) => x.get(k.asInstanceOf[A]) == Some(v) }
catch { case ex: ClassCastException => false }
})
override def equals(that: Any): Boolean = that match {
case that: Map[b, _] =>
(this eq that) ||
/*(that canEqual this) && !!!*/
(this.size == that.size) && {
try {
this forall {
case (k, v) => that.get(k.asInstanceOf[b]) match {
case Some(`v`) => true
case _ => false
}
}
} catch {
case ex: ClassCastException =>
println("calss cast "); false
}}
case _ =>
false
}
}

View File

@ -173,7 +173,7 @@ trait MutableMapTemplate[A, B, +This <: MutableMapTemplate[A, B, This] with muta
@deprecated("This operation will create a new map in the future. To add elements as a side\n"+
"effect to an existing map and return that map itself, use -=. If you do want\n"+
"to create a fresh map, you can use `clone() -=` to avoid a @deprecated warning.")
override def -(key: A): This = { -=(key); thisCollection }
override def -(key: A): This = { -=(key); repr }
/** If given key is defined in this map, remove it and return associated value as an Option.
* If key is not present return None.
@ -221,10 +221,10 @@ trait MutableMapTemplate[A, B, +This <: MutableMapTemplate[A, B, This] with muta
}
override def clone(): This =
empty ++= thisCollection
empty ++= repr
/** The result when this map is used as a builder */
def result: This = thisCollection
def result: This = repr
/** Removes two or more elements from this collection and returns
* the collection itself.
@ -237,7 +237,7 @@ trait MutableMapTemplate[A, B, +This <: MutableMapTemplate[A, B, This] with muta
"Use `clone() -=' if you intend to create a new collection.")
override def -(elem1: A, elem2: A, elems: A*): This = {
this -= elem1 -= elem2 --= elems
thisCollection
repr
}
/** Removes a number of elements provided by a Traversable object and returns
@ -249,7 +249,7 @@ trait MutableMapTemplate[A, B, +This <: MutableMapTemplate[A, B, This] with muta
"Use `clone() --=' if you intend to create a new collection.")
override def --(iter: Traversable[A]): This = {
for (elem <- iter) -=(elem)
thisCollection
repr
}
@ -262,6 +262,6 @@ trait MutableMapTemplate[A, B, +This <: MutableMapTemplate[A, B, This] with muta
"Use `clone() --=' if you intend to create a new collection.")
override def --(iter: Iterator[A]): This = {
for (elem <- iter) -=(elem)
thisCollection
repr
}
}

View File

@ -103,9 +103,9 @@ trait MutableSetTemplate[A, +This <: MutableSetTemplate[A, This] with mutable.Se
*/
def clear() { foreach(-=) }
override def clone(): mutable.Set[A] = empty ++= thisCollection
override def clone(): mutable.Set[A] = empty ++= repr
def result: This = thisCollection
def result: This = repr
/** Adds a single element to this collection and returns
* the collection itself.
@ -114,7 +114,7 @@ trait MutableSetTemplate[A, +This <: MutableSetTemplate[A, This] with mutable.Se
*/
@deprecated("Use += instead if you intend to add by side effect to an existing collection.\n"+
"Use `clone() +=' if you intend to create a new collection.")
override def + (elem: A): This = { +=(elem); thisCollection }
override def + (elem: A): This = { +=(elem); repr }
/** Adds two or more elements to this collection and returns
* the collection itself.
@ -127,7 +127,7 @@ trait MutableSetTemplate[A, +This <: MutableSetTemplate[A, This] with mutable.Se
"Use `clone() +=' if you intend to create a new collection.")
override def + (elem1: A, elem2: A, elems: A*): This = {
this += elem1 += elem2 ++= elems
thisCollection
repr
}
/** Adds a number of elements provided by a traversable object and returns
@ -139,7 +139,7 @@ trait MutableSetTemplate[A, +This <: MutableSetTemplate[A, This] with mutable.Se
"Use `clone() ++=' if you intend to create a new collection.")
override def ++(iter: Traversable[A]): This = {
for (elem <- iter) +=(elem)
thisCollection
repr
}
@ -152,7 +152,7 @@ trait MutableSetTemplate[A, +This <: MutableSetTemplate[A, This] with mutable.Se
"Use `clone() ++=' if you intend to create a new collection.")
override def ++ (iter: Iterator[A]): This = {
for (elem <- iter) +=(elem)
thisCollection
repr
}
/** Removes a single element from this collection and returns
@ -162,7 +162,7 @@ trait MutableSetTemplate[A, +This <: MutableSetTemplate[A, This] with mutable.Se
*/
@deprecated("Use -= instead if you intend to remove by side effect from an existing collection.\n"+
"Use `clone() -=' if you intend to create a new collection.")
override def -(elem: A): This = { -=(elem); thisCollection }
override def -(elem: A): This = { -=(elem); repr }
/** Removes two or more elements from this collection and returns
* the collection itself.
@ -175,7 +175,7 @@ trait MutableSetTemplate[A, +This <: MutableSetTemplate[A, This] with mutable.Se
"Use `clone() -=' if you intend to create a new collection.")
override def -(elem1: A, elem2: A, elems: A*): This = {
this -= elem1 -= elem2 --= elems
thisCollection
repr
}
/** Removes a number of elements provided by a Traversable object and returns
@ -187,7 +187,7 @@ trait MutableSetTemplate[A, +This <: MutableSetTemplate[A, This] with mutable.Se
"Use `clone() --=' if you intend to create a new collection.")
override def --(iter: Traversable[A]): This = {
for (elem <- iter) -=(elem)
thisCollection
repr
}
/** Removes a number of elements provided by an iterator and returns
@ -199,7 +199,7 @@ trait MutableSetTemplate[A, +This <: MutableSetTemplate[A, This] with mutable.Se
"Use `clone() --=' if you intend to create a new collection.")
override def --(iter: Iterator[A]): This = {
for (elem <- iter) -=(elem)
thisCollection
repr
}
/** Send a message to this scriptable object.

View File

@ -22,7 +22,7 @@ trait MutableVectorTemplate[A, +This <: MutableVectorTemplate[A, This] with muta
/** Creates a view of this iterable @see Iterable.View
*/
override def view = new MutableVectorView[A, This] {
protected lazy val underlying = self.thisCollection
protected lazy val underlying = self.repr
override def iterator = self.iterator
override def length = self.length
override def apply(idx: Int) = self.apply(idx)

View File

@ -19,7 +19,7 @@ import TraversableView.NoBuilder
* @author Martin Odersky
* @version 2.8
*/
trait MutableVectorView[A, +Coll <: mutable.Vector[_]] extends MutableVectorViewTemplate[A, Coll, MutableVectorView[A, Coll]]
trait MutableVectorView[A, +Coll] extends MutableVectorViewTemplate[A, Coll, MutableVectorView[A, Coll]]
object MutableVectorView {
type Coll = TraversableView[_, C] forSome {type C <: Traversable[_]}

View File

@ -20,7 +20,7 @@ import TraversableView.NoBuilder
* @version 2.8
*/
trait MutableVectorViewTemplate[A,
+Coll <: mutable.Vector[_],
+Coll,
+This <: MutableVectorView[A, Coll] with MutableVectorViewTemplate[A, Coll, This]]
extends mutable.Vector[A] with MutableVectorTemplate[A, This] with VectorView[A, Coll] with VectorViewTemplate[A, Coll, This]
{ self =>

View File

@ -16,7 +16,6 @@ import mutable.{ListBuffer, HashMap}
// import immutable.{List, Nil, ::}
import generic._
import PartialFunction._
/** Class <code>Sequence[A]</code> represents sequences of elements
* of type <code>A</code>.
@ -30,462 +29,6 @@ import PartialFunction._
* @author Matthias Zenger
* @version 1.0, 16/07/2003
*/
trait SequenceTemplate[+A, +This <: SequenceTemplate[A, This] with Sequence[A]] extends IterableTemplate[A, This] { self =>
import Traversable.breaks._
/** Returns the length of the sequence.
*/
def length: Int
/** Returns the elements at position `idx`
*/
def apply(idx: Int): A
/** Result of comparing <code>length</code> with operand <code>len</code>.
* returns <code>x</code> where
* <code>x &lt; 0</code> iff <code>this.length &lt; len</code>
* <code>x == 0</code> iff <code>this.length == len</code>
* <code>x &gt; 0</code> iff <code>this.length &gt; len</code>.
*
* The method as implemented here does not call length directly; its running time
* is O(length min len) instead of O(length). The method should be overwritten
* if computing length is cheap.
*/
def lengthCompare(len: Int): Int = {
var i = 0
breakable {
for (_ <- this) {
i += 1
if (i > len) break
}
}
i - len
}
/** Should always be <code>length</code> */
override def size = length
/** Is this partial function defined for the index <code>x</code>?
*/
def isDefinedAt(x: Int): Boolean = (x >= 0) && (x < length)
/** Returns length of longest segment starting from a start index `from`
* such that every element of the segment satisfies predicate `p`.
* @note may not terminate for infinite-sized collections.
* @param p the predicate
* @param from the start index
*/
def segmentLength(p: A => Boolean, from: Int): Int = {
var result = 0
var i = 0
breakable {
for (x <- this) {
if (i >= from && !p(x)) { result = i - from; break }
else i += 1
}
}
result
}
/** Returns length of longest prefix of this seqence
* such that every element of the prefix satisfies predicate `p`.
* @note may not terminate for infinite-sized collections.
* @param p the predicate
*/
def prefixLength(p: A => Boolean) = segmentLength(p, 0)
/** Returns index of the first element satisfying a predicate, or -1, if none exists.
*
* @note may not terminate for infinite-sized collections.
* @param p the predicate
*/
def indexWhere(p: A => Boolean): Int = indexWhere(p, 0)
/** Returns index of the first element starting from a start index
* satisying a predicate, or -1, if none exists.
*
* @note may not terminate for infinite-sized collections.
* @param p the predicate
* @param from the start index
*/
def indexWhere(p: A => Boolean, from: Int): Int = {
var result = -1
var i = from
breakable {
for (x <- this) {
if (i >= from && p(x)) { result = i; break }
else i += 1
}
}
result
}
/** Returns index of the first element satisying a predicate, or -1. */
@deprecated("Use `indexWhere' instead")
def findIndexOf(p: A => Boolean): Int = indexWhere(p)
/** Returns the index of the first occurence of the specified
* object in this iterable object.
*
* @note may not terminate for infinite-sized collections.
* @param elem element to search for.
* @return the index in this sequence of the first occurence of the
* specified element, or -1 if the sequence does not contain
* this element.
*/
def indexOf[B >: A](elem: B): Int = indexOf(elem, 0)
/** Returns the index of the first occurence of the specified
* object in this iterable object, starting from a start index, or
* -1, if none exists.
*
* @note may not terminate for infinite-sized collections.
* @param elem element to search for.
*/
def indexOf[B >: A](elem: B, from: Int): Int = indexWhere(elem ==, from)
/** Returns the index of the last occurence of the specified element
* in this sequence, or -1 if the sequence does not contain this element.
*
* @param elem element to search for.
* @return the index in this sequence of the last occurence of the
* specified element, or -1 if the sequence does not contain
* this element.
*/
def lastIndexOf[B >: A](elem: B): Int = lastIndexWhere(elem ==)
/** Returns the index of the last
* occurence of the specified element in this sequence
* before or at a given end index,
* or -1 if the sequence does not contain this element.
*
* @param elem element to search for.
* @param end the end index
*/
def lastIndexOf[B >: A](elem: B, end: Int): Int = lastIndexWhere(elem ==, end)
/** Returns index of the last element satisying a predicate, or -1, if none exists.
*
* @param p the predicate
* @return the index of the last element satisfying <code>p</code>,
* or -1 if such an element does not exist
*/
def lastIndexWhere(p: A => Boolean): Int = lastIndexWhere(p, length - 1)
/** Returns index of the last element not exceeding a given end index
* and satisying a predicate, or -1 if none exists.
*
* @param end the end index
* @param p the predicate
*/
def lastIndexWhere(p: A => Boolean, end: Int): Int = {
var i = length - 1
val it = reverseIterator
while (it.hasNext && { val elem = it.next; (i > end || !p(elem)) }) i -= 1
i
}
/** A sequence of type <code>C</code> consisting of all elements of
* this sequence in reverse order.
* @note the operation is implemented by building a new sequence
* from <code>this(length - 1), ..., this(0)</code>
* If random access is inefficient for the given sequence implementation,
* this operation should be overridden.
*/
def reverse: This = {
var xs: List[A] = List()
for (x <- this)
xs = x :: xs
val b = newBuilder
for (x <- xs)
b += x
b.result
}
/** The elements of this sequence in reversed order
*/
def reverseIterator: Iterator[A] = reverse.iterator
@deprecated("use `reverseIterator' instead")
def reversedElements = reverseIterator
/**
* Checks whether the argument sequence is contained at the
* specified index within the receiver object.
*
* If the both the receiver object, <code>this</code> and
* the argument, <code>that</code> are infinite sequences
* this method may not terminate.
*
* @return true if <code>that</code> is contained in
* <code>this</code>, at the specified index, otherwise false
*
* @see String.startsWith
*/
def startsWith[B](that: Sequence[B], offset: Int): Boolean = {
val i = this.iterator drop offset
val j = that.iterator
while (j.hasNext && i.hasNext)
if (i.next != j.next)
return false
!j.hasNext
}
/**
* Check whether the receiver object starts with the argument sequence.
*
* @return true if <code>that</code> is a prefix of <code>this</code>,
* otherwise false
*/
def startsWith[B](that: Sequence[B]): Boolean = startsWith(that, 0)
/** @return true if this sequence end with that sequence
* @see String.endsWith
*/
def endsWith[B](that: Sequence[B]): Boolean = {
val i = this.iterator.drop(length - that.length)
val j = that.iterator
while (i.hasNext && j.hasNext)
if (i.next != j.next)
return false
!j.hasNext
}
/** @return -1 if <code>that</code> not contained in this, otherwise the
* first index where <code>that</code> is contained.
*/
def indexOfSeq[B >: A](that: Sequence[B]): Int = indexOfSeq(that, 0)
def indexOfSeq[B >: A](that: Sequence[B], fromIndex: Int): Int =
if (thisCollection.hasDefiniteSize && that.hasDefiniteSize)
KMP.indexOf(thisCollection, 0, length, that, 0, that.length, fromIndex)
else {
var i = fromIndex
var s: Sequence[A] = thisCollection drop i
while (!s.isEmpty) {
if (s startsWith that)
return i
i += 1
s = s.tail
}
-1
}
/** @return -1 if <code>that</code> not contained in this, otherwise the
* last index where <code>that</code> is contained.
* @note may not terminate for infinite-sized collections.
*/
def lastIndexOfSeq[B >: A](that: Sequence[B]): Int = lastIndexOfSeq(that, that.length)
// since there's no way to find the last index in an infinite sequence,
// we just document it may not terminate and assume it will.
def lastIndexOfSeq[B >: A](that: Sequence[B], fromIndex: Int): Int =
KMP.lastIndexOf(thisCollection, 0, length, that, 0, that.length, fromIndex)
/** Tests if the given value <code>elem</code> is a member of this
* sequence.
*
* @param elem element whose membership has to be tested.
* @return <code>true</code> iff there is an element of this sequence
* which is equal (w.r.t. <code>==</code>) to <code>elem</code>.
*/
def contains(elem: Any): Boolean = exists (_ == elem)
/** <p>
* Computes the multiset union of this sequence and the given sequence
* <code>that</code>. For example:
* </p><pre>
* <b>val</b> xs = List(1, 1, 2)
* <b>val</b> ys = List(1, 2, 2, 3)
* println(xs union ys) // prints "List(1, 1, 2, 1, 2, 2, 3)"
* println(ys union xs) // prints "List(1, 2, 2, 3, 1, 1, 2)"
* </pre>
*
* @param that the sequence of elements to add to the sequence.
* @return a sequence containing the elements of this
* sequence and those of the given sequence <code>that</code>.
*/
def union[B >: A, That](that: Sequence[B])(implicit bf: BuilderFactory[B, That, This]): That =
thisCollection ++ that
/** <p>
* Computes the multiset difference between this sequence and the
* given sequence <code>that</code>. If an element appears more
* than once in both sequences, the difference contains <i>m</i> copies
* of that element, where <i>m</i> is the difference between the
* number of times the element appears in this sequence and the number
* of times it appears in <code>that</code>. For example:
* </p><pre>
* <b>val</b> xs = List(1, 1, 2)
* <b>val</b> ys = List(1, 2, 2, 3)
* println(xs diff ys) // prints "List(1)"
* println(xs -- ys) // prints "List()"
* </pre>
*
* @param that the sequence of elements to remove from this sequence.
* @return the sequence of elements contained only in this sequence plus
* <i>m</i> copies of each element present in both sequences,
* where <i>m</i> is defined as above.
*/
def diff[B >: A, That](that: Sequence[B]): This = {
val occ = occCounts(that)
val b = newBuilder
for (x <- this)
if (occ(x) == 0) b += x
else occ(x) -= 1
b.result
}
/** <p>
* Computes the multiset intersection between this sequence and the
* given sequence <code>that</code>; the intersection contains <i>m</i>
* copies of an element contained in both sequences, where <i>m</i> is
* the smaller of the number of times the element appears in this
* sequence or in <code>that</code>. For example:
* </p><pre>
* <b>val</b> xs = List(1, 1, 2)
* <b>val</b> ys = List(3, 2, 2, 1)
* println(xs intersect ys) // prints "List(1, 2)"
* println(ys intersect xs) // prints "List(2, 1)"
* </pre>
*
* @param that the sequence to intersect.
* @return the sequence of elements contained both in this sequence and
* in the given sequence <code>that</code>.
*/
def intersect[B >: A, That](that: Sequence[B]): This = {
val occ = occCounts(that)
val b = newBuilder
for (x <- this)
if (occ(x) > 0) {
b += x
occ(x) -= 1
}
b.result
}
private def occCounts[B](seq: Sequence[B]): mutable.Map[B, Int] = {
val occ =
if (seq.isEmpty || seq.head.isInstanceOf[Unhashable])
new mutable.ListMap[B, Int] { override def default(k: B) = 0 }
else
new mutable.HashMap[B, Int] { override def default(k: B) = 0 }
for (y <- seq) occ(y) += 1
occ
}
/** Builds a new sequence from this sequence in which any duplicates (wrt to ==) removed.
* Among duplicate elements, only the first one is retained in the result sequence
*/
def removeDuplicates: This = {
val b = newBuilder
var seen = Set[A]()
for (x <- this) {
if (!(seen contains x)) {
b += x
seen = (seen + x)
}
}
b.result
}
/** A new sequence, consisting of all elements of current sequence
* except that `replaced` elements starting from `from` are replaced
* by `patch`.
*/
def patch[B >: A, That](from: Int, patch: Sequence[B], replaced: Int)(implicit bf: BuilderFactory[B, That, This]): That = {
val b = bf(thisCollection)
val (prefix, rest) = this.splitAt(from)
b ++= prefix
b ++= patch
b ++= rest/*.view*/ drop replaced // !!! todo: make this a view
b.result
}
/** Returns a new sequence of given length containing the elements of this sequence followed by zero
* or more occurrences of given elements.
*/
def padTo[B >: A, That](len: Int, elem: B)(implicit bf: BuilderFactory[B, That, This]): That = {
val b = bf(thisCollection)
b.sizeHint(length max len)
var diff = len - length
b ++= thisCollection
while (diff > 0) {
b += elem
diff -=1
}
b.result
}
/**
* Overridden for efficiency.
*
* @return the sequence itself
*/
override def toSequence: Sequence[A] = thisCollection
/** The range of all indices of this sequence.
*/
def indices: Range = 0 until length
override def view = new SequenceView[A, This] {
protected lazy val underlying = self.thisCollection
override def iterator = self.iterator
override def length = self.length
override def apply(idx: Int) = self.apply(idx)
}
override def view(from: Int, until: Int) = view.slice(from, until)
/** Need to override string, so that it's not the Function1's string that gets mixed in.
*/
override def toString = super[IterableTemplate].toString
override def hashCode() = (Sequence.hashSeed /: this)(_ * 41 + _.hashCode)
override def canEqualCollection(that: Any) = that.isInstanceOf[Sequence[_]]
override def equals(that: Any): Boolean =
anyEq(that) || (cond(that) {
case x: Sequence[_] if (x canEqualCollection this) => this sameElements x
})
/** Returns index of the last element satisying a predicate, or -1. */
@deprecated("use `lastIndexWhere' instead")
def findLastIndexOf(p: A => Boolean): Int = lastIndexWhere(p)
/** A sub-sequence starting at index <code>from</code>
* and extending up to the length of the current sequence
*
* @param from The index of the first element of the slice
* @throws IndexOutOfBoundsException if <code>from &lt; 0</code>
*/
@deprecated("use `drop' instead")
def slice(from: Int): Sequence[A] = slice(from, length)
@deprecated("Should be replaced by <code>(s1, s2) forall { case (x, y) => f(x, y) }</code>")
def equalsWith[B](that: Sequence[B])(f: (A,B) => Boolean): Boolean = {
val i = this.iterator
val j = that.iterator
while (i.hasNext && j.hasNext)
if (!f(i.next, j.next))
return false
!i.hasNext && !j.hasNext
}
/** Is <code>that</code> a slice in this? */
@deprecated("Should be replaced by <code>indexOfSeq(that) != -1</code>")
def containsSlice[B](that: Sequence[B]): Boolean = indexOfSeq(that) != -1
/**
* returns a projection that can be used to call non-strict <code>filter</code>,
* <code>map</code>, and <code>flatMap</code> methods that build projections
* of the collection.
*/
@deprecated("use `view' instead")
override def projection = view
}
trait SequenceTemplate[+A, +This <: SequenceTemplate[A, This] with Sequence[A]]
extends IterableTemplate[A, This]
with SequenceLike[A, This]

View File

@ -19,7 +19,7 @@ import TraversableView.NoBuilder
* @author Martin Odersky
* @version 2.8
*/
trait SequenceView[+A, +Coll <: Sequence[_]] extends SequenceViewTemplate[A, Coll, SequenceView[A, Coll]]
trait SequenceView[+A, +Coll] extends SequenceViewTemplate[A, Coll, SequenceView[A, Coll]]
object SequenceView {
type Coll = TraversableView[_, C] forSome {type C <: Traversable[_]}

View File

@ -21,7 +21,7 @@ import TraversableView.NoBuilder
* @version 2.8
*/
trait SequenceViewTemplate[+A,
+Coll <: Sequence[_],
+Coll,
+This <: SequenceView[A, Coll] with SequenceViewTemplate[A, Coll, This]]
extends Sequence[A] with SequenceTemplate[A, This] with IterableView[A, Coll] with IterableViewTemplate[A, Coll, This]
{ self =>
@ -142,7 +142,7 @@ trait SequenceViewTemplate[+A,
override def patch[B >: A, That](from: Int, patch: Sequence[B], replaced: Int)(implicit bf: BuilderFactory[B, That, This]): That = {
newPatched(from, patch, replaced).asInstanceOf[That]
// was: val b = bf(thisCollection)
// was: val b = bf(repr)
// if (b.isInstanceOf[NoBuilder[_]]) newPatched(from, patch, replaced).asInstanceOf[That]
// else super.patch[B, That](from, patch, replaced)(bf)
}

View File

@ -162,9 +162,7 @@ self =>
*/
override def toString = super[IterableTemplate].toString
// override def hashCode() = (this map (_.hashCode)).foldLeft(0)(_ + _)
override def hashCode() = this map (_.hashCode) sum
override def canEqualCollection(that: Any) = that.isInstanceOf[Set[_]]
/** Compares this set with another object and returns true, iff the
* other object is also a set which contains the same elements as
@ -175,10 +173,14 @@ self =>
* @return <code>true</code> iff this set and the other set
* contain the same elements.
*/
override def equals(that: Any): Boolean = anyEq(that) || (cond(that) {
case x: Set[A] if (x canEqualCollection this) && size == x.size =>
// can we find a safer way to do this?
try this subsetOf x.asInstanceOf[Set[A]]
catch { case ex: ClassCastException => false }
})
override def equals(that: Any): Boolean = that match {
case that: Set[A] =>
(this eq that) ||
/*(that canEqual this) &&!!!*/
(this.size == that.size) &&
(try this subsetOf that.asInstanceOf[Set[A]]
catch { case ex: ClassCastException => false })
case _ =>
false
}
}

View File

@ -19,7 +19,7 @@ trait Sorted[K, +This <: Sorted[K, This]]{
def ordering : Ordering[K];
/** The current collection */
protected def thisCollection: This
protected def repr: This
/** return as a projection the set of keys in this collection */
def keySet: SortedSet[K]
@ -74,10 +74,10 @@ trait Sorted[K, +This <: Sorted[K, This]]{
def to(to: K): This = {
// tough!
val i = keySet.from(to).iterator;
if (!i.hasNext) return thisCollection
if (!i.hasNext) return repr
val next = i.next;
if (next == to) {
if (!i.hasNext) return thisCollection
if (!i.hasNext) return repr
else return until(i.next)
} else return until(next)
}

View File

@ -21,7 +21,7 @@ import scala.collection._
trait SortedSetTemplate[A, +This <: SortedSet[A] with SortedSetTemplate[A, This]] extends Sorted[A, This] with SetTemplate[A, This] {
self =>
override def keySet = thisCollection
override def keySet = repr
override def firstKey: A = head
override def lastKey: A = last

View File

@ -19,7 +19,7 @@ import scala.collection._
*/
trait Subtractable[A, +This <: Subtractable[A, This]] { self =>
protected def thisCollection: This
protected def repr: This
/** Returns a new collection that contains all elements of the current collection
* except a given element.
@ -43,7 +43,7 @@ trait Subtractable[A, +This <: Subtractable[A, This]] { self =>
*
* @param elems the traversable object containing the elements that do not form part of the new collection.
*/
def --(elems: Traversable[A]): This = (thisCollection /: elems) (_ - _)
def --(elems: Traversable[A]): This = (repr /: elems) (_ - _)
/** Returns a new collection that contains all elements of the current collection
* except the elements provided by an iterator
@ -51,5 +51,5 @@ trait Subtractable[A, +This <: Subtractable[A, This]] { self =>
* @param elems the iterator containing the elements that do not form part of the new collection
* @note same as --
*/
def --(iter: Iterator[A]): This = (thisCollection /: iter) (_ - _)
def --(iter: Iterator[A]): This = (repr /: iter) (_ - _)
}

View File

@ -89,7 +89,7 @@ private class TraversableProxyTemplateConfirmation[+A, +This <: TraversableTempl
extends TraversableProxyTemplate[A, Traversable[A]]
with interfaces.TraversableMethods[A, Traversable[A]]
{
def self: This = thisCollection.asInstanceOf[This]
def self: This = repr.asInstanceOf[This]
protected[this] def newBuilder = collection.Traversable.newBuilder[A]
// : Builder[A, This]
}

View File

@ -62,793 +62,6 @@ import annotation.experimental
* @author Martin Odersky
* @version 2.8
*/
trait TraversableTemplate[+A, +This <: TraversableTemplate[A, This] with Traversable[A]] {
self =>
trait TraversableTemplate[+A, +This <: TraversableTemplate[A, This] with Traversable[A]]
extends TraversableLike[A, This]
import Traversable.breaks._
/** <p>
* The proper way to do this would be to make <code>self</code> of type
* <code>This</code>. But unfortunately this makes <b><code>this</code></b>
* to be of type <code>Traversable[A]</code>. Since <code>Traversable</code>
* is a subtype of <code>TraversableTemplate</code>, all methods of
* <b><code>this</code></b> are taken from <code>Traversable</code>. In
* particular the <code>newBuilder</code> method is taken from
* <code>Traversable</code>, which means it yields a <code>Traversable[A]</code>
* instead of a <code>This</code>.
* </p>
* <p>
* The right way out of this is to change Scala's member selection rules,
* so that always the most specific type will be selected, no matter
* whether a member is abstract or concrete. I tried to fake this by
* having a method <code>thisTemplate</code> which returns this at the
* <code>Template</code> type. But unfortunately that does not work,
* because we need to call <code>newBuilder</code> on this at the
* <code>Template</code> type (so that we get back a <code>This</code>)
* and <code>newBuilder</code> has to be a <b><code>protected[this]</code></b>
* because of variance.<br/>
* The less appealing alternative is implemented now: Forget the self type
* and introduce a <code>thisCollection</code> which is this seen as an
* instance of <code>This</code>. We should go back to this once we have
* ameliorated Scala's member selection rules.
* </p>
*/
protected def thisCollection: This = this.asInstanceOf[This]
/** Create a new builder for this collection type.
*/
protected[this] def newBuilder: Builder[A, This]
/** Apply a function <code>f</code> to all elements of this
* traversable object.
*
* @param f A function that is applied for its side-effect to every element.
* The result (of arbitrary type U) of function `f` is discarded.
*
* @note This method underlies the implementation of most other bulk operations.
* It's important to implement this method in an efficient way.
*/
def foreach[U](f: A => U): Unit
/** Does this collection contain no elements?
*/
def isEmpty: Boolean = {
var result = true
breakable {
for (x <- this) {
result = false
break
}
}
result
}
/** Does this collection contain some elements?
*/
def nonEmpty: Boolean = !isEmpty
/** The number of elements in this collection
*/
def size: Int = {
var result = 0
for (x <- this) result += 1
result
}
/** Returns true if this collection is known to have finite size.
* This is the case if the collection type is strict, or if the
* collection type is non-strict (e.g. it's a Stream), but all
* collection elements have been computed.
* Many methods in this trait will not work on collections of
* infinite sizes.
*/
def hasDefiniteSize = true
/** Creates a new traversable of type `That` which contains all elements of this traversable
* followed by all elements of another traversable.
*
* @param that The traversable to append
*/
def ++[B >: A, That](that: Traversable[B])(implicit bf: BuilderFactory[B, That, This]): That = {
val b = bf(thisCollection)
b ++= thisCollection
b ++= that
b.result
}
/** Creates a new traversable of type `That` which contains all elements of this traversable
* followed by all elements of an iterator.
*
* @param that The iterator to append
*/
def ++[B >: A, That](that: Iterator[B])(implicit bf: BuilderFactory[B, That, This]): That = {
val b = bf(thisCollection)
b ++= thisCollection
b ++= that
b.result
}
/** Returns the traversable that results from applying the given function
* <code>f</code> to each element of this traversable and collecting the results
* in an traversable of type `That`.
*
* @param f function to apply to each element.
*/
def map[B, That](f: A => B)(implicit bf: BuilderFactory[B, That, This]): That = {
val b = bf(thisCollection)
for (x <- this) b += f(x)
b.result
}
/** Applies the given function <code>f</code> to each element of
* this traversable, then concatenates the results in an traversable of type That.
*
* @param f the function to apply on each element.
*/
def flatMap[B, That](f: A => Traversable[B])(implicit bf: BuilderFactory[B, That, This]): That = {
val b = bf(thisCollection)
for (x <- this) b ++= f(x)
b.result
}
/** Returns all the elements of this traversable that satisfy the
* predicate <code>p</code>. The order of the elements is preserved.
* @param p the predicate used to filter the traversable.
* @return the elements of this traversable satisfying <code>p</code>.
*/
def filter(p: A => Boolean): This = {
val b = newBuilder
for (x <- this)
if (p(x)) b += x
b.result
}
/** Returns a traversable with all elements of this traversable which do not satisfy the predicate
* <code>p</code>.
*
* @param p the predicate used to test elements
* @return the traversable without all elements that satisfy <code>p</code>
*/
def filterNot(p: A => Boolean): This = filter(!p(_))
/** Returns a new traversable based on the partial function <code>pf</code>,
* containing pf(x) for all the elements which are defined on pf.
* The order of the elements is preserved.
* @param pf the partial function which filters and maps the traversable.
* @return the new traversable.
*/
@experimental
def filterMap[B, That](pf: PartialFunction[Any, B])(implicit bf: BuilderFactory[B, That, This]): That = {
val b = bf(thisCollection)
for (x <- this) if (pf.isDefinedAt(x)) b += pf(x)
b.result
}
/** Returns a traversable with all elements of this traversable which do not satisfy the predicate
* <code>p</code>.
*
* @param p the predicate used to test elements
* @return the traversable without all elements that satisfy <code>p</code>
*/
@deprecated("use `filterNot' instead")
def remove(p: A => Boolean): This = filterNot(p)
/** Partitions this traversable in two traversables according to a predicate.
*
* @param p the predicate on which to partition
* @return a pair of traversables: the traversable that satisfies the predicate
* <code>p</code> and the traversable that does not.
* The relative order of the elements in the resulting traversables
* is the same as in the original traversable.
*/
def partition(p: A => Boolean): (This, This) = {
val l, r = newBuilder
for (x <- this) (if (p(x)) l else r) += x
(l.result, r.result)
}
/** Partition this traversable into a map of traversables
* according to some discriminator function.
* @invariant (xs partition f)(k) = xs filter (x => f(x) == k)
*
* @note This method is not re-implemented by views. This means
* when applied to a view it will always force the view and
* return a new collection.
*/
def groupBy[K](f: A => K): Map[K, This] = {
var m = Map[K, Builder[A, This]]()
for (elem <- this) {
val key = f(elem)
val bldr = m get key match {
case None => val b = newBuilder; m = m updated (key, b); b
case Some(b) => b
}
bldr += elem
}
m mapValues (_.result)
}
/** Return true iff the given predicate `p` yields true for all elements
* of this traversable.
*
* @note May not terminate for infinite-sized collections.
* @param p the predicate
*/
def forall(p: A => Boolean): Boolean = {
var result = true
breakable {
for (x <- this)
if (!p(x)) { result = false; break }
}
result
}
/** Return true iff there is an element in this traversable for which the
* given predicate `p` yields true.
*
* @note May not terminate for infinite-sized collections.
* @param p the predicate
*/
def exists(p: A => Boolean): Boolean = {
var result = false
breakable {
for (x <- this)
if (p(x)) { result = true; break }
}
result
}
/** Count the number of elements in the traversable which satisfy a predicate.
*
* @note Will not terminate for infinite-sized collections.
* @param p the predicate for which to count
* @return the number of elements satisfying the predicate <code>p</code>.
*/
def count(p: A => Boolean): Int = {
var cnt = 0
for (x <- this) {
if (p(x)) cnt += 1
}
cnt
}
/** Find and return the first element of the traversable object satisfying a
* predicate, if any.
*
* @note may not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered.
* @param p the predicate
* @return an option containing the first element in the traversable object
* satisfying <code>p</code>, or <code>None</code> if none exists.
*/
def find(p: A => Boolean): Option[A] = {
var result: Option[A] = None
breakable {
for (x <- this)
if (p(x)) { result = Some(x); break }
}
result
}
/** Combines the elements of this traversable object together using the binary
* function <code>f</code>, from left to right, and starting with
* the value <code>z</code>.
*
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
* @return <code>f(... (f(f(z, a<sub>0</sub>), a<sub>1</sub>) ...),
* a<sub>n</sub>)</code> if the traversable is
* <code>[a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub>]</code>.
*/
def foldLeft[B](z: B)(op: (B, A) => B): B = {
var result = z
for (x <- this)
result = op(result, x)
result
}
/** Similar to <code>foldLeft</code> but can be used as
* an operator with the order of traversable and zero arguments reversed.
* That is, <code>z /: xs</code> is the same as <code>xs foldLeft z</code>
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
*/
def /: [B](z: B)(op: (B, A) => B): B = foldLeft(z)(op)
/** Combines the elements of this traversable together using the binary
* function <code>f</code>, from right to left, and starting with
* the value <code>z</code>.
*
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
* @return <code>f(a<sub>0</sub>, f(a<sub>1</sub>, f(..., f(a<sub>n</sub>, z)...)))</code>
* if the traversable is <code>[a<sub>0</sub>, a1, ..., a<sub>n</sub>]</code>.
*/
def foldRight[B](z: B)(op: (A, B) => B): B = {
var elems: List[A] = Nil
for (x <- this) elems = x :: elems
elems.foldLeft(z)((x, y) => op(y, x))
}
/** An alias for <code>foldRight</code>.
* That is, <code>xs :\ z</code> is the same as <code>xs foldRight z</code>
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
*/
def :\ [B](z: B)(op: (A, B) => B): B = foldRight(z)(op)
/** Combines the elements of this traversable object together using the binary
* operator <code>op</code>, from left to right
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
* @param op The operator to apply
* @return <code>op(... op(a<sub>0</sub>,a<sub>1</sub>), ..., a<sub>n</sub>)</code>
if the traversable object has elements
* <code>a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub></code>.
* @throws Predef.UnsupportedOperationException if the traversable object is empty.
*/
def reduceLeft[B >: A](op: (B, A) => B): B = {
if (isEmpty) throw new UnsupportedOperationException("empty.reduceLeft")
var result: B = head
var first = true
for (x <- this)
if (first) first = false
else result = op(result, x)
result
}
/** Combines the elements of this traversable object together using the binary
* operator <code>op</code>, from left to right
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
* @param op The operator to apply
* @return If the traversable is non-empty, the result of the operations as an Option, otherwise None.
*/
def reduceLeftOption[B >: A](op: (B, A) => B): Option[B] = {
if (isEmpty) None else Some(reduceLeft(op))
}
/** Combines the elements of this traversable object together using the binary
* operator <code>op</code>, from right to left
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
* @param op The operator to apply
*
* @return <code>a<sub>0</sub> op (... op (a<sub>n-1</sub> op a<sub>n</sub>)...)</code>
* if the traversable object has elements <code>a<sub>0</sub>, a<sub>1</sub>, ...,
* a<sub>n</sub></code>.
*
* @throws Predef.UnsupportedOperationException if the iterator is empty.
*/
def reduceRight[B >: A](op: (A, B) => B): B = {
if (isEmpty) throw new UnsupportedOperationException("empty.reduceRight")
var elems: List[A] = Nil
for (x <- this) elems = x :: elems
elems.reduceLeft[B]((x, y) => op(y, x))
}
/** Combines the elements of this traversable object together using the binary
* operator <code>op</code>, from right to left.
* @note Will not terminate for infinite-sized collections.
* @note Might return different results for different runs, unless this traversable is ordered, or
* the operator is associative and commutative.
* @param op The operator to apply
* @return If the traversable is non-empty, the result of the operations as an Option, otherwise None.
*/
def reduceRightOption[B >: A](op: (A, B) => B): Option[B] = {
if (isEmpty) None else Some(reduceRight(op))
}
/** Returns the sum of all elements with respect to the numeric operations in `num` */
def sum[B >: A](implicit num: Numeric[B]): B = {
var acc = num.zero
for (x <- self) acc = num.plus(acc, x)
acc
}
/** Returns the product of all elements with respect to the numeric operations in `num` */
def product[B >: A](implicit num: Numeric[B]): B = {
var acc = num.one
for (x <- self) acc = num.times(acc, x)
acc
}
/** Returns the minimal element with respect to the given ordering `cmp` */
def min[B >: A](implicit cmp: Ordering[B]): A = {
require(!self.isEmpty, "<empty>.min")
var acc = self.head
for (x <- self)
if (cmp.lt(x, acc)) acc = x
acc
}
/** Returns the maximal element with respect to the given ordering `cmp` */
def max[B >: A](implicit cmp: Ordering[B]): A = {
require(!self.isEmpty, "<empty>.max")
var acc = self.head
for (x <- self)
if (cmp.gt(x, acc)) acc = x
acc
}
/** The first element of this traversable.
*
* @note Might return different results for different runs, unless this traversable is ordered
* @throws Predef.NoSuchElementException if the traversable is empty.
*/
def head: A = {
var result: () => A = () => throw new NoSuchElementException
breakable {
for (x <- this) {
result = () => x
break
}
}
result()
}
/** Returns as an option the first element of this traversable
* or <code>None</code> if traversable is empty.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def headOption: Option[A] = if (isEmpty) None else Some(head)
/** An traversable consisting of all elements of this traversable
* except the first one.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def tail: This = {
require(!self.isEmpty, "<empty>.tail")
drop(1)
}
/** The last element of this traversable.
*
* @throws Predef.NoSuchElementException if the traversable is empty.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def last: A = {
var lst = head
for (x <- this)
lst = x
lst
}
/** Returns as an option the last element of this traversable or
* <code>None</code> if traversable is empty.
*
* @return the last element as an option.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def lastOption: Option[A] = if (isEmpty) None else Some(last)
/** An traversable consisting of all elements of this traversable except the last one.
* @throws Predef.UnsupportedOperationException if the stream is empty.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def init: This = {
if (isEmpty) throw new UnsupportedOperationException("empty.init")
var lst = head
var follow = false
val b = newBuilder
for (x <- this) {
if (follow) b += lst
else follow = true
lst = x
}
b.result
}
/** Return an traversable consisting only of the first <code>n</code>
* elements of this traversable, or else the whole traversable, if it has less
* than <code>n</code> elements.
*
* @param n the number of elements to take
* @note Might return different results for different runs, unless this traversable is ordered
*/
def take(n: Int): This = {
val b = newBuilder
var i = 0
breakable {
for (x <- this) {
if (i >= n) break
b += x
i += 1
}
}
b.result
}
/** Returns this traversable without its <code>n</code> first elements
* If this traversable has less than <code>n</code> elements, the empty
* traversable is returned.
*
* @param n the number of elements to drop
* @return the new traversable
* @note Might return different results for different runs, unless this traversable is ordered
*/
def drop(n: Int): This = {
val b = newBuilder
var i = 0
for (x <- this) {
if (i >= n) b += x
i += 1
}
b.result
}
/** A sub-traversable starting at index `from`
* and extending up to (but not including) index `until`.
*
* @note c.slice(from, to) is equivalent to (but possibly more efficient than)
* c.drop(from).take(to - from)
*
* @param from The index of the first element of the returned subsequence
* @param until The index of the element following the returned subsequence
* @note Might return different results for different runs, unless this traversable is ordered
*/
def slice(from: Int, until: Int): This = {
val b = newBuilder
var i = 0
breakable {
for (x <- this) {
if (i >= from) b += x
i += 1
if (i == until) break
}
}
b.result
}
/** Returns the longest prefix of this traversable whose elements satisfy
* the predicate <code>p</code>.
*
* @param p the test predicate.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def takeWhile(p: A => Boolean): This = {
val b = newBuilder
breakable {
for (x <- this) {
if (!p(x)) break
b += x
}
}
b.result
}
/** Returns the longest suffix of this traversable whose first element
* does not satisfy the predicate <code>p</code>.
*
* @param p the test predicate.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def dropWhile(p: A => Boolean): This = {
val b = newBuilder
var go = false
for (x <- this) {
if (!p(x)) go = true
if (go) b += x
}
b.result
}
/** Returns a pair consisting of the longest prefix of the traversable whose
* elements all satisfy the given predicate, and the rest of the traversable.
*
* @param p the test predicate
* @return a pair consisting of the longest prefix of the traversable whose
* elements all satisfy <code>p</code>, and the rest of the traversable.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def span(p: A => Boolean): (This, This) = {
val l, r = newBuilder
var toLeft = true
for (x <- this) {
toLeft = toLeft && p(x)
(if (toLeft) l else r) += x
}
(l.result, r.result)
}
/** Split the traversable at a given point and return the two parts thus
* created.
*
* @param n the position at which to split
* @return a pair of traversables composed of the first <code>n</code>
* elements, and the other elements.
* @note Might return different results for different runs, unless this traversable is ordered
*/
def splitAt(n: Int): (This, This) = {
val l, r = newBuilder
var i = 0
for (x <- this) {
(if (i < n) l else r) += x
i += 1
}
(l.result, r.result)
}
/** Copy all elements of this traversable to a given buffer
* @note Will not terminate for infinite-sized collections.
* @param dest The buffer to which elements are copied
*/
def copyToBuffer[B >: A](dest: Buffer[B]) {
for (x <- this) dest += x
}
/** Fills the given array <code>xs</code> with at most `len` elements of
* this traversable starting at position `start`.
* Copying will stop once either the end of the current traversable is reached or
* `len` elements have been copied or the end of the array is reached.
*
* @note Will not terminate for infinite-sized collections.
* @param xs the array to fill.
* @param start starting index.
* @param len number of elements to copy
*/
def copyToArray[B >: A](xs: Array[B], start: Int, len: Int) {
var i = start
val end = (start + len) min xs.length
breakable {
for (x <- this) {
if (i >= end) break
xs(i) = x
i += 1
}
}
}
/** Fills the given array <code>xs</code> with the elements of
* this traversable starting at position <code>start</code>
* until either the end of the current traversable or the end of array `xs` is reached.
*
* @note Will not terminate for infinite-sized collections.
* @param xs the array to fill.
* @param start starting index.
* @pre the array must be large enough to hold all elements.
*/
def copyToArray[B >: A](xs: Array[B], start: Int) {
copyToArray(xs, start, xs.length - start)
}
/** Converts this traversable to a fresh Array containing all elements.
* @note Will not terminate for infinite-sized collections.
*/
def toArray[B >: A : ClassManifest]: Array[B] = {
val result = new Array[B](size)
copyToArray(result, 0)
result
}
/** Returns a list with all elements of this traversable object.
* @note Will not terminate for infinite-sized collections.
*/
def toList: List[A] = (new ListBuffer[A] ++= thisCollection).toList
/** Returns an traversable with all elements in this traversable object.
* @note Will not terminate for infinite-sized collections.
*/
def toIterable: Iterable[A] = toStream
/** Returns a sequence with all elements in this traversable object.
* @note Will not terminate for infinite-sized collections.
*/
def toSequence: Sequence[A] = toList
/** Returns a vector with all elements in this traversable object.
* @note Will not terminate for infinite-sized collections.
*/
def toVector[B >: A]: mutable.Vector[B] = (new ArrayBuffer[B] ++= thisCollection)
/** Returns a stream with all elements in this traversable object.
*/
def toStream: Stream[A] = toList.toStream
/** Returns a set with all unique elements in this traversable object.
*/
@experimental
def toSet[B >: A]: immutable.Set[B] = immutable.Set() ++ thisCollection
/** Returns a string representation of this traversable object. The resulting string
* begins with the string <code>start</code> and is finished by the string
* <code>end</code>. Inside, the string representations of elements (w.r.t.
* the method <code>toString()</code>) are separated by the string
* <code>sep</code>.
*
* @ex <code>List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"</code>
* @param start starting string.
* @param sep separator string.
* @param end ending string.
* @return a string representation of this traversable object.
*/
def mkString(start: String, sep: String, end: String): String =
addString(new StringBuilder(), start, sep, end).toString
/** Returns a string representation of this traversable object. The string
* representations of elements (w.r.t. the method <code>toString()</code>)
* are separated by the string <code>sep</code>.
*
* @param sep separator string.
* @return a string representation of this traversable object.
*/
def mkString(sep: String): String =
addString(new StringBuilder(), sep).toString
/** Returns a string representation of this traversable object. The string
* representations of elements (w.r.t. the method <code>toString()</code>)
* follow each other without any separator string.
*/
def mkString: String =
addString(new StringBuilder()).toString
/** Write all elements of this traversable into given string builder.
* The written text begins with the string <code>start</code> and is finished by the string
* <code>end</code>. Inside, the string representations of elements (w.r.t.
* the method <code>toString()</code>) are separated by the string
* <code>sep</code>.
*/
def addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder = {
b append start
var first = true
for (x <- this) {
if (first) first = false
else b append sep
b append x
}
b append end
}
/** Write all elements of this string into given string builder.
* The string representations of elements (w.r.t. the method <code>toString()</code>)
* are separated by the string <code>sep</code>.
*/
def addString(b: StringBuilder, sep: String): StringBuilder = addString(b, "", sep, "")
/** Write all elements of this string into given string builder without using
* any separator between consecutive elements.
*/
def addString(b: StringBuilder): StringBuilder = addString(b, "")
override def toString = mkString(stringPrefix + "(", ", ", ")")
def canEqualCollection(other: Any) = true
/** Defines the prefix of this object's <code>toString</code> representation.
*/
def stringPrefix : String = {
var string = thisCollection.getClass.getName
val idx1 = string.lastIndexOf('.' : Int)
if (idx1 != -1) string = string.substring(idx1 + 1)
val idx2 = string.indexOf('$')
if (idx2 != -1) string = string.substring(0, idx2)
string
}
/** Creates a view of this traversable @see TraversableView
*/
def view = new TraversableView[A, This] {
protected lazy val underlying = self.thisCollection
override def foreach[B](f: A => B) = self foreach f
}
/** A sub-traversable starting at index `from`
* and extending up to (but not including) index `until`.
*
* @param from The index of the first element of the slice
* @param until The index of the element following the slice
* @note The difference between `view` and `slice` is that `view` produces
* a view of the current traversable, whereas `slice` produces a new traversable.
*
* @note Might return different results for different runs, unless this traversable is ordered
* @note view(from, to) is equivalent to view.slice(from, to)
*/
def view(from: Int, until: Int): TraversableView[A, This] = view.slice(from, until)
}

View File

@ -23,7 +23,7 @@ import TraversableView.NoBuilder
* @author Martin Odersky
* @version 2.8
*/
trait TraversableView[+A, +Coll <: Traversable[_]] extends TraversableViewTemplate[A, Coll, TraversableView[A, Coll]]
trait TraversableView[+A, +Coll] extends TraversableViewTemplate[A, Coll, TraversableView[A, Coll]]
object TraversableView {
class NoBuilder[A] extends Builder[A, Nothing] {

View File

@ -31,7 +31,7 @@ import TraversableView.NoBuilder
* @version 2.8
*/
trait TraversableViewTemplate[+A,
+Coll <: Traversable[_],
+Coll,
+This <: TraversableView[A, Coll] with TraversableViewTemplate[A, Coll, This]]
extends Traversable[A] with TraversableTemplate[A, This] {
self =>
@ -144,7 +144,7 @@ self =>
override def ++[B >: A, That](that: Traversable[B])(implicit bf: BuilderFactory[B, That, This]): That = {
newAppended(that).asInstanceOf[That]
// was: val b = bf(thisCollection)
// was: val b = bf(repr)
// if (b.isInstanceOf[NoBuilder[_]]) newAppended(that).asInstanceOf[That]
// else super.++[B, That](that)(bf)
}
@ -153,14 +153,14 @@ self =>
override def map[B, That](f: A => B)(implicit bf: BuilderFactory[B, That, This]): That = {
newMapped(f).asInstanceOf[That]
// was: val b = bf(thisCollection)
// was: val b = bf(repr)
// if (b.isInstanceOf[NoBuilder[_]]) newMapped(f).asInstanceOf[That]
// else super.map[B, That](f)(bf)
}
override def flatMap[B, That](f: A => Traversable[B])(implicit bf: BuilderFactory[B, That, This]): That = {
newFlatMapped(f).asInstanceOf[That]
// was: val b = bf(thisCollection)
// was: val b = bf(repr)
// if (b.isInstanceOf[NoBuilder[_]]) newFlatMapped(f).asInstanceOf[That]
// else super.flatMap[B, That](f)(bf)
}

View File

@ -8,10 +8,8 @@
// $Id$
package scala.collection.generic
import scala.collection.{BufferedIterator, Sequence, Vector}
import scala.collection.mutable.ArrayBuffer
package scala.collection
package generic
/** Sequences that support O(1) element access and O(1) length computation.
* This class does not add any methods to Sequence but overrides several
@ -21,258 +19,4 @@ import scala.collection.mutable.ArrayBuffer
* @author Martin Odersky
* @version 2.8
*/
trait VectorTemplate[+A, +This <: VectorTemplate[A, This] with Vector[A]] extends SequenceTemplate[A, This] { self =>
// Overridden methods from IterableTemplate
/** The iterator returned by the iterator method
*/
@serializable @SerialVersionUID(1756321872811029277L)
protected class Elements(start: Int, end: Int) extends BufferedIterator[A] {
private var i = start
def hasNext: Boolean = i < end
def next: A =
if (i < end) {
val x = self(i)
i += 1
x
} else Iterator.empty.next
def head =
if (i < end) self(i) else Iterator.empty.next
/** drop is overridden to enable fast searching in the middle of random access sequences */
override def drop(n: Int): Iterator[A] =
if (n > 0) new Elements(start + n, end) else this
/** take is overridden to be symmetric to drop */
override def take(n: Int): Iterator[A] =
if (n <= 0) Iterator.empty.buffered
else if (start + n < end) new Elements(start, start + n)
else this
}
override def iterator: Iterator[A] = new Elements(0, length)
override def isEmpty: Boolean = { length == 0 }
override def foreach[U](f: A => U): Unit = {
var i = 0
val len = length
while (i < len) { f(this(i)); i += 1 }
}
override def forall(p: A => Boolean): Boolean = prefixLength(p(_)) == length
override def exists(p: A => Boolean): Boolean = prefixLength(!p(_)) != length
override def find(p: A => Boolean): Option[A] = {
val i = prefixLength(!p(_))
if (i < length) Some(this(i)) else None
}
private def foldl[B](start: Int, z: B, op: (B, A) => B): B = {
var i = start
val len = length
var result = z
while (i < len) {
result = op(result, this(i))
i += 1
}
result
}
private def foldr[B](start: Int, len: Int, z: B, op: (A, B) => B): B =
if (start == len) z
else op(this(start), foldr(start + 1, len, z, op))
override def foldLeft[B](z: B)(op: (B, A) => B): B =
foldl(0, z, op)
override def foldRight[B](z: B)(op: (A, B) => B): B =
foldr(0, length, z, op)
override def reduceLeft[B >: A](op: (B, A) => B): B =
if (length > 0) foldl(1, this(0), op) else super.reduceLeft(op)
override def reduceRight[B >: A](op: (A, B) => B): B =
if (length > 0) foldr(0, length - 1, this(length - 1), op) else super.reduceRight(op)
override def zip[A1 >: A, B, That](that: Iterable[B])(implicit bf: BuilderFactory[(A1, B), That, This]): That = that match {
case that: Vector[_] =>
val b = bf(thisCollection)
var i = 0
val len = this.length min that.length
b.sizeHint(len)
while (i < len) {
b += ((this(i), that(i).asInstanceOf[B]))
i += 1
}
b.result
case _ =>
super.zip[A1, B, That](that)(bf)
}
override def zipWithIndex[A1 >: A, That](implicit bf: BuilderFactory[(A1, Int), That, This]): That = {
val b = bf(thisCollection)
val len = length
b.sizeHint(len)
var i = 0
while (i < len) {
b += ((this(i), i))
i += 1
}
b.result
}
override def slice(from: Int, until: Int): This = {
var i = from max 0
val end = until min length
val b = newBuilder
b.sizeHint(end - i)
while (i < end) {
b += this(i)
i += 1
}
b.result
}
override def head: A = if (isEmpty) super.head else this(0)
override def tail: This = if (isEmpty) super.tail else slice(1, length)
override def last: A = if (length > 0) this(length - 1) else super.last
override def init: This = if (length > 0) slice(0, length - 1) else super.init
override def take(n: Int): This = slice(0, n)
override def drop(n: Int): This = slice(n, length)
override def takeRight(n: Int): This = slice(length - n, length)
override def dropRight(n: Int): This = slice(0, length - n)
override def splitAt(n: Int): (This, This) = (take(n), drop(n))
override def takeWhile(p: A => Boolean): This = take(prefixLength(p))
override def dropWhile(p: A => Boolean): This = drop(prefixLength(p))
override def span(p: A => Boolean): (This, This) = splitAt(prefixLength(p))
override def sameElements[B >: A](that: Iterable[B]): Boolean = that match {
case that: Vector[_] =>
val len = length
len == that.length && {
var i = 0
while (i < len && this(i) == that(i)) i += 1
i == len
}
case _ =>
super.sameElements(that)
}
override def copyToArray[B >: A](xs: Array[B], start: Int, len: Int) {
var i = 0
var j = start
val end = length min len min (xs.length - start)
while (i < end) {
xs(j) = this(i)
i += 1
j += 1
}
}
// Overridden methods from Sequence
override def lengthCompare(len: Int): Int = length - len
override def segmentLength(p: A => Boolean, from: Int): Int = {
val start = from
val len = length
var i = start
while (i < len && p(this(i))) i += 1
i - start
}
private def negLength(n: Int) = if (n == length) -1 else n
override def indexWhere(p: A => Boolean, from: Int): Int = {
val start = from max 0
negLength(start + segmentLength(!p(_), start))
}
override def lastIndexWhere(p: A => Boolean, end: Int): Int = {
var i = end
while (i >= 0 && !p(this(i))) i -= 1
i
}
override def reverse: This = {
val b = newBuilder
b.sizeHint(length)
var i = length
while (0 < i) {
i -= 1
b += this(i)
}
b.result
}
override def reverseIterator: Iterator[A] = new Iterator[A] {
private var i = self.length
def hasNext: Boolean = 0 < i
def next: A =
if (0 < i) {
i -= 1
self(i)
} else Iterator.empty.next
}
override def startsWith[B](that: Sequence[B], offset: Int): Boolean = that match {
case that: Vector[_] =>
var i = offset
var j = 0
val thisLen = length
val thatLen = that.length
while (i < thisLen && j < thatLen && this(i) == that(j)) {
i += 1
j += 1
}
j == thatLen
case _ =>
var i = offset
val thisLen = length
val thatElems = that.iterator
while (i < thisLen && thatElems.hasNext) {
if (this(i) != thatElems.next())
return false
i += 1
}
!thatElems.hasNext
}
override def endsWith[B](that: Sequence[B]): Boolean = that match {
case that: Vector[_] =>
var i = length - 1
var j = that.length - 1
(j <= i) && {
while (j >= 0) {
if (this(i) != that(j))
return false
i -= 1
j -= 1
}
true
}
case _ =>
super.endsWith(that)
}
// only optimization
override def equals(that: Any): Boolean = that match {
case that: Vector[_] => this.length == that.length && startsWith(that, 0)
case _ => super.equals(that)
}
override def view = new VectorView[A, This] {
protected lazy val underlying = self.thisCollection
override def iterator = self.iterator
override def length = self.length
override def apply(idx: Int) = self.apply(idx)
}
override def view(from: Int, until: Int) = view.slice(from, until)
}
trait VectorTemplate[+A, +This <: VectorTemplate[A, This] with Vector[A]] extends SequenceTemplate[A, This] with VectorLike[A, This]

View File

@ -20,7 +20,7 @@ import TraversableView.NoBuilder
* @author Martin Odersky
* @version 2.8
*/
trait VectorView[+A, +Coll <: Vector[_]] extends VectorViewTemplate[A, Coll, VectorView[A, Coll]]
trait VectorView[+A, +Coll] extends VectorViewTemplate[A, Coll, VectorView[A, Coll]]
object VectorView {
type Coll = TraversableView[_, C] forSome {type C <: Traversable[_]}

View File

@ -21,7 +21,7 @@ import TraversableView.NoBuilder
* @version 2.8
*/
trait VectorViewTemplate[+A,
+Coll <: Vector[_],
+Coll,
+This <: VectorView[A, Coll] with VectorViewTemplate[A, Coll, This]]
extends Vector[A] with VectorTemplate[A, This] with SequenceView[A, Coll] with SequenceViewTemplate[A, Coll, This]
{ self =>

View File

@ -446,6 +446,7 @@ case object Nil extends List[Nothing] {
throw new NoSuchElementException("head of empty list")
override def tail: List[Nothing] =
throw new NoSuchElementException("tail of empty list")
// Removal of equals method here might lead to an infinite recusion similar to IntMap.equals.
override def equals(that: Any) = that match {
case that1: Sequence[_] => that1.isEmpty
case _ => false

View File

@ -28,7 +28,7 @@ import scala.collection.generic.MapProxyTemplate
trait MapProxy[A, +B] extends Map[A, B] with MapProxyTemplate[A, B, Map[A, B]]
{
override def thisCollection = this
override def repr = this
private def newProxy[B1 >: B](newSelf: Map[A, B1]): MapProxy[A, B1] =
new MapProxy[A, B1] { val self = newSelf }

View File

@ -22,7 +22,7 @@ import scala.collection.generic.SetProxyTemplate
trait SetProxy[A] extends Set[A] with SetProxyTemplate[A, Set[A]]
{
override def thisCollection = this
override def repr = this
private def newProxy[B >: A](newSelf: Set[B]): SetProxy[B] =
new SetProxy[B] { val self = newSelf }

View File

@ -54,7 +54,7 @@ trait SortedMap[A, +B] extends Map[A, B]
* @param elems the traversable object.
*/
override def ++[B1 >: B](elems: collection.Traversable[(A, B1)]): SortedMap[A, B1] =
((thisCollection: SortedMap[A, B1]) /: elems) (_ + _)
((repr: SortedMap[A, B1]) /: elems) (_ + _)
/** Adds a number of elements provided by an iterator
* and returns a new collection with the added elements.
@ -62,7 +62,7 @@ trait SortedMap[A, +B] extends Map[A, B]
* @param iter the iterator
*/
override def ++[B1 >: B] (iter: Iterator[(A, B1)]): SortedMap[A, B1] =
((thisCollection: SortedMap[A, B1]) /: iter) (_ + _)
((repr: SortedMap[A, B1]) /: iter) (_ + _)
}
object SortedMap extends ImmutableSortedMapFactory[SortedMap] {

View File

@ -111,12 +111,6 @@ class Stack[+A] extends Sequence[A] {
def next: A = { val r = top; cur = cur.pop; r }
}
/** Returns the hash code for this stack.
*
* @return the hash code of the stack.
*/
override def hashCode(): Int = "Stack".hashCode
/**
* Redefines the prefix of the string representation.
*/
@ -128,7 +122,6 @@ class Stack[+A] extends Sequence[A] {
override def length: Int = Stack.this.length + 1
override def top: B = elem
override def pop: Stack[B] = Stack.this
override def hashCode(): Int = elem.hashCode() * 37 + Stack.this.hashCode()
}
}

View File

@ -0,0 +1,250 @@
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2002-2009, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
// $Id: RichString.scala 18589 2009-08-27 14:45:35Z odersky $
package scala.collection
package immutable
import scala.util.matching.Regex
import generic._
object StringLike {
// just statics for companion class.
private final val LF: Char = 0x0A
private final val FF: Char = 0x0C
private final val CR: Char = 0x0D
private final val SU: Char = 0x1A
}
import StringLike._
trait StringLike[+Repr] extends VectorLike[Char, Repr] with Ordered[String] {
self =>
/** Creates a string builder buffer as builder for this class */
protected[this] def newBuilder: Builder[Char, Repr]
/** Return element at index `n`
* @throws IndexOutofBoundsException if the index is not valid
*/
def apply(n: Int): Char = toString charAt n
def length: Int = toString.length
override def mkString = toString
/** return n times the current string
*/
def * (n: Int): String = {
val buf = new StringBuilder
for (i <- 0 until n) buf append toString
buf.toString
}
override def compare(other: String) = toString compareTo other
private def isLineBreak(c: Char) = c == LF || c == FF
/** <p>
* Strip trailing line end character from this string if it has one.
* A line end character is one of
* </p>
* <ul style="list-style-type: none;">
* <li>LF - line feed (0x0A hex)</li>
* <li>FF - form feed (0x0C hex)</li>
* </ul>
* <p>
* If a line feed character LF is preceded by a carriage return CR
* (0x0D hex), the CR character is also stripped (Windows convention).
* </p>
*/
def stripLineEnd: String = {
val len = toString.length
if (len == 0) toString
else {
val last = apply(len - 1)
if (isLineBreak(last))
toString.substring(0, if (last == LF && len >= 2 && apply(len - 2) == CR) len - 2 else len - 1)
else
toString
}
}
/** <p>
* Return all lines in this string in an iterator, including trailing
* line end characters.
* </p>
* <p>
* The number of strings returned is one greater than the number of line
* end characters in this string. For an empty string, a single empty
* line is returned. A line end character is one of
* </p>
* <ul style="list-style-type: none;">
* <li>LF - line feed (0x0A hex)</li>
* <li>FF - form feed (0x0C hex)</li>
* </ul>
*/
def linesWithSeparators: Iterator[String] = new Iterator[String] {
val str = self.toString
private val len = str.length
private var index = 0
def hasNext: Boolean = index < len
def next(): String = {
if (index >= len) throw new NoSuchElementException("next on empty iterator")
val start = index
while (index < len && !isLineBreak(apply(index))) index += 1
index += 1
str.substring(start, index min len)
}
}
/** Return all lines in this string in an iterator, excluding trailing line
* end characters, i.e. apply <code>.stripLineEnd</code> to all lines
* returned by <code>linesWithSeparators</code>.
*/
def lines: Iterator[String] =
linesWithSeparators map (line => new WrappedString(line).stripLineEnd)
/** Return all lines in this string in an iterator, excluding trailing line
* end characters, i.e. apply <code>.stripLineEnd</code> to all lines
* returned by <code>linesWithSeparators</code>.
*/
def linesIterator: Iterator[String] =
linesWithSeparators map (line => new WrappedString(line).stripLineEnd)
/** Returns this string with first character converted to upper case */
def capitalize: String =
if (toString == null) null
else if (toString.length == 0) ""
else {
val chars = toString.toCharArray
chars(0) = chars(0).toUpperCase
new String(chars)
}
/** Returns this string with the given <code>prefix</code> stripped. */
def stripPrefix(prefix: String) =
if (toString.startsWith(prefix)) toString.substring(prefix.length)
else toString
/** Returns this string with the given <code>suffix</code> stripped. */
def stripSuffix(suffix: String) =
if (toString.endsWith(suffix)) toString.substring(0, toString.length() - suffix.length)
else toString
/** <p>
* For every line in this string:
* </p>
* <blockquote>
* Strip a leading prefix consisting of blanks or control characters
* followed by <code>marginChar</code> from the line.
* </blockquote>
*/
def stripMargin(marginChar: Char): String = {
val buf = new StringBuilder
for (line <- linesWithSeparators) {
val len = line.length
var index = 0
while (index < len && line.charAt(index) <= ' ') index += 1
buf append
(if (index < len && line.charAt(index) == marginChar) line.substring(index + 1) else line)
}
buf.toString
}
/** <p>
* For every line in this string:
* </p>
* <blockquote>
* Strip a leading prefix consisting of blanks or control characters
* followed by <code>|</code> from the line.
* </blockquote>
*/
def stripMargin: String = stripMargin('|')
private def escape(ch: Char): String = "\\Q" + ch + "\\E"
@throws(classOf[java.util.regex.PatternSyntaxException])
def split(separator: Char): Array[String] = toString.split(escape(separator))
@throws(classOf[java.util.regex.PatternSyntaxException])
def split(separators: Array[Char]): Array[String] = {
val re = separators.foldLeft("[")(_+escape(_)) + "]"
toString.split(re)
}
/** You can follow a string with `.r', turning
* it into a Regex. E.g.
*
* """A\w*""".r is the regular expression for identifiers starting with `A'.
*/
def r: Regex = new Regex(toString)
def toBoolean: Boolean = parseBoolean(toString)
def toByte: Byte = java.lang.Byte.parseByte(toString)
def toShort: Short = java.lang.Short.parseShort(toString)
def toInt: Int = java.lang.Integer.parseInt(toString)
def toLong: Long = java.lang.Long.parseLong(toString)
def toFloat: Float = java.lang.Float.parseFloat(toString)
def toDouble: Double = java.lang.Double.parseDouble(toString)
private def parseBoolean(s: String): Boolean =
if (s != null) s.toLowerCase match {
case "true" => true
case "false" => false
case _ => throw new NumberFormatException("For input string: \""+s+"\"")
}
else
throw new NumberFormatException("For input string: \"null\"")
/* !!! causes crash?
def toArray: Array[Char] = {
val result = new Array[Char](length)
toString.getChars(0, length, result, 0)
result
}
*/
/** <p>
* Uses the underlying string as a pattern (in a fashion similar to
* printf in C), and uses the supplied arguments to fill in the
* holes.
* </p>
* <p>
* The interpretation of the formatting patterns is described in
* <a href="" target="contentFrame" class="java/util/Formatter">
* <code>java.util.Formatter</code></a>.
* </p>
*
* @param args the arguments used to instantiating the pattern.
* @throws java.lang.IllegalArgumentException
*/
def format(args : Any*) : String =
java.lang.String.format(toString, args.asInstanceOf[Seq[AnyRef]].toArray: _*)
/** <p>
* Like format(args*) but takes an initial Locale parameter
* which influences formatting as in java.lang.String's format.
* </p>
* <p>
* The interpretation of the formatting patterns is described in
* <a href="" target="contentFrame" class="java/util/Formatter">
* <code>java.util.Formatter</code></a>.
* </p>
*
* @param locale an instance of java.util.Locale
* @param args the arguments used to instantiating the pattern.
* @throws java.lang.IllegalArgumentException
*/
def format(l: java.util.Locale, args: Any*): String =
java.lang.String.format(l, toString, args.asInstanceOf[Seq[AnyRef]].toArray: _*)
}

View File

@ -0,0 +1,24 @@
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2002-2009, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
// $Id: RichString.scala 18589 2009-08-27 14:45:35Z odersky $
package scala.collection
package immutable
class StringOps(override val repr: String) extends StringLike[String] {
override protected[this] def thisCollection: WrappedString = new WrappedString(repr)
override protected[this] def toCollection(repr: String): WrappedString = new WrappedString(repr)
/** Creates a string builder buffer as builder for this class */
override protected[this] def newBuilder = new StringBuilder
override def toString = repr
}

View File

@ -20,6 +20,10 @@ import scala.annotation.experimental
* I looked for the fastest way to do these operations so there
* is some unattractiveness.
*
* Martin: We should disable this because it is superseded in functionality by
* StringLike/StringOps. We need to clarify whether performance is good enough with the new scheme.
* If not, maybe we need to bring back this object in some form.
*
* @author Paul Phillips
* @version 2.8
*/
@ -213,4 +217,4 @@ object StringVector
}
(sb1.toString, sb2.toString)
}
}
}

View File

@ -0,0 +1,29 @@
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2002-2009, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
// $Id: RichString.scala 18589 2009-08-27 14:45:35Z odersky $
package scala.collection
package immutable
import scala.util.matching.Regex
import generic._
class WrappedString(override val self: String) extends Vector[Char] with StringLike[WrappedString] with Proxy {
override protected[this] def thisCollection: WrappedString = this
override protected[this] def toCollection(repr: WrappedString): WrappedString = repr
/** Creates a string builder buffer as builder for this class */
override protected[this] def newBuilder = WrappedString.newBuilder
}
object WrappedString {
def newBuilder: Builder[Char, WrappedString] = new StringBuilder() mapResult (new WrappedString(_))
}

View File

@ -15,7 +15,7 @@ import scala.reflect.ClassManifest
import annotation.unchecked.uncheckedVariance
trait AddableMethods[A, +This <: Addable[A, This]] {
protected def thisCollection: This
protected def repr: This
def +(elem: A): This
def + (elem1: A, elem2: A, elems: A*): This
def ++ (elems: Traversable[A]): This
@ -23,7 +23,7 @@ trait AddableMethods[A, +This <: Addable[A, This]] {
}
trait SubtractableMethods[A, +This <: Subtractable[A, This]] {
protected def thisCollection: This
protected def repr: This
def -(elem: A): This
def -(elem1: A, elem2: A, elems: A*): This
def --(elems: Traversable[A]): This

View File

@ -0,0 +1,77 @@
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2003-2009, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
// $Id: ResizableArray.scala 18387 2009-07-24 15:28:37Z odersky $
package scala.collection.mutable
import scala.collection.generic._
/** This class is used internally to implement data structures that
* are based on resizable arrays.
*
* @author Matthias Zenger, Burak Emir
* @author Martin Odersky
* @version 2.8
*/
class GenericArray[A](override val length: Int)
extends Vector[A]
with TraversableClass[A, GenericArray]
with VectorTemplate[A, GenericArray[A]] {
override def companion: Companion[GenericArray] = GenericArray
var array: Array[AnyRef] = new Array[AnyRef](length)
def apply(idx: Int): A = {
if (idx >= length) throw new IndexOutOfBoundsException(idx.toString)
array(idx).asInstanceOf[A]
}
def update(idx: Int, elem: A) {
if (idx >= length) throw new IndexOutOfBoundsException(idx.toString)
array(idx) = elem.asInstanceOf[AnyRef]
}
/** Fills the given array <code>xs</code> with the elements of
* this sequence starting at position <code>start</code>.
*
* @param xs the array to fill.
* @param start starting index.
*/
override def copyToArray[B >: A](xs: Array[B], start: Int) {
Array.copy(array, 0, xs, start, length)
}
/** Copy all elements to a buffer
* @param The buffer to which elements are copied
override def copyToBuffer[B >: A](dest: Buffer[B]) {
dest ++= (array: Sequence[AnyRef]).asInstanceOf[Sequence[B]]
}
*/
override def foreach[U](f: A => U) {
var i = 0
while (i < length) {
f(array(i).asInstanceOf[A])
i += 1
}
}
}
object GenericArray extends SequenceFactory[GenericArray] {
implicit def builderFactory[A]: BuilderFactory[A, GenericArray[A], Coll] = new VirtualBuilderFactory[A]
def newBuilder[A]: Builder[A, GenericArray[A]] =
new ArrayBuffer[A] mapResult { buf =>
val result = new GenericArray[A](buf.length)
for (i <- 0 until buf.length) result.array(i) = buf(i).asInstanceOf[AnyRef]
// !!! todo: replace with buf.copyToArray(result.array, 0)
result
}
}

View File

@ -28,7 +28,7 @@ import scala.collection.generic.MapProxyTemplate
trait MapProxy[A, B] extends Map[A, B] with MapProxyTemplate[A, B, Map[A, B]]
{
override def thisCollection = this
override def repr = this
override def empty: MapProxy[A, B] = new MapProxy[A, B] { val self = MapProxy.this.self.empty }
override def +(kv: (A, B)) = { self.update(kv._1, kv._2) ; this }

View File

@ -18,6 +18,12 @@ import scala.collection.generic.{ Addable, Cloneable, Growable }
* To prioritize elements of type T there must be an implicit
* Ordering[T] available at creation.
*
* Martin: This class is utterly broken. It uses a resizable array
* as a heap, yet pretends to be a sequence via this same resizable array.
* Needless to say, order of elements is different in the two.
* So this class needs to be redesigned so that it uses the array only
* in its implementation, but implements a sequence interface separately.
*
* @author Matthias Zenger
* @version 1.0, 03/05/2004
*/
@ -34,7 +40,7 @@ class PriorityQueue[A](implicit ord: Ordering[A])
size0 += 1 // we do not use array(0)
override def length: Int = super.length - 1 // adjust length accordingly
override def isEmpty: Boolean = size0 < 2
override protected def thisCollection = this
override def repr = this
// hey foreach, our 0th element doesn't exist
override def foreach[U](f: A => U) {
@ -156,14 +162,9 @@ class PriorityQueue[A](implicit ord: Ordering[A])
}
}
/** Checks if two queues are structurally identical.
*
* @return true, iff both queues contain the same sequence of elements.
/** This is utterly broken: Two priority queues of different length can still be equal!
* The method should be removed once PriotyQueue inserts correctly into the sequence class hierarchy.
*/
override def canEqualCollection(that: Any) = that.isInstanceOf[PriorityQueue[_]]
// !!! At this writing this is the only sequence which imposes stricter
// equality requirements, if there is some logic behind this we should
// document it.
override def equals(obj: Any): Boolean = obj match {
case that: PriorityQueue[_] => (this.iterator zip that.iterator) forall { case (x, y) => x == y }
case _ => false

View File

@ -113,6 +113,6 @@ trait ResizableArray[A] extends Vector[A]
}
object ResizableArray extends SequenceFactory[ResizableArray] {
implicit def builderFactory[A]: BuilderFactory[A, Vector[A], Coll] = new VirtualBuilderFactory[A]
implicit def builderFactory[A]: BuilderFactory[A, ResizableArray[A], Coll] = new VirtualBuilderFactory[A]
def newBuilder[A]: Builder[A, ResizableArray[A]] = new ArrayBuffer[A]
}

View File

@ -22,7 +22,7 @@ import scala.collection.generic.SetProxyTemplate
*/
trait SetProxy[A] extends Set[A] with SetProxyTemplate[A, Set[A]]
{
override def thisCollection = this
override def repr = this
override def empty = new SetProxy[A] { val self = SetProxy.this.self.empty }
override def + (elem: A) = { self += elem ; this }
override def - (elem: A) = { self -= elem ; this }

View File

@ -12,7 +12,6 @@
package scala.collection.mutable
import collection.generic._
import scala.runtime.RichString
import compat.Platform.arraycopy
import scala.reflect.Manifest

View File

@ -0,0 +1,47 @@
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2003-2009, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
// $Id: MutableVectorTemplate.scala 18387 2009-07-24 15:28:37Z odersky $
package scala.collection
package mutable
import generic._
/** A subtrait of collection.Vector which represents sequences
* that can be mutated.
*/
trait VectorLike[A, +Repr] extends scala.collection.VectorLike[A, Repr] { self =>
override protected[this] def thisCollection: Vector[A] = this.asInstanceOf[Vector[A]]
override protected[this] def toCollection(repr: Repr): Vector[A] = repr.asInstanceOf[Vector[A]]
def update(idx: Int, elem: A)
/** Creates a view of this iterable @see Iterable.View
*/
override def view = new MutableVectorView[A, Repr] {
protected lazy val underlying = self.repr
override def iterator = self.iterator
override def length = self.length
override def apply(idx: Int) = self.apply(idx)
override def update(idx: Int, elem: A) = self.update(idx, elem)
}
/** A sub-sequence view starting at index `from`
* and extending up to (but not including) index `until`.
*
* @param from The index of the first element of the slice
* @param until The index of the element following the slice
* @note The difference between `view` and `slice` is that `view` produces
* a view of the current sequence, whereas `slice` produces a new sequence.
*
* @note view(from, to) is equivalent to view.slice(from, to)
*/
override def view(from: Int, until: Int) = view.slice(from, until)
}

View File

@ -6,7 +6,7 @@
** |/ **
\* */
// $Id: ArrayVector.scala 18589 2009-08-27 14:45:35Z odersky $
// $Id: WrappedArray.scala 18589 2009-08-27 14:45:35Z odersky $
package scala.collection.mutable
@ -21,7 +21,10 @@ import collection.generic._
* @author Martin Odersky, Stephane Micheloud
* @version 1.0
*/
abstract class ArrayVector[A] extends Vector[A] with VectorTemplate[A, ArrayVector[A]] { self =>
abstract class WrappedArray[A] extends Vector[A] with VectorLike[A, WrappedArray[A]] with Proxy { self =>
override protected[this] def thisCollection: WrappedArray[A] = this
override protected[this] def toCollection(repr: WrappedArray[A]): WrappedArray[A] = repr
/** The manifest of the element type */
def elemManifest: ClassManifest[A]
@ -36,10 +39,13 @@ abstract class ArrayVector[A] extends Vector[A] with VectorTemplate[A, ArrayVect
def update(index: Int, elem: A): Unit
/** The underlying array */
def value: AnyRef
def array: AnyRef
/** The original of a proxy represented by a wrapped array */
override def self = repr
/** Creates new builder for this collection ==> move to subclasses
*/
override protected[this] def newBuilder: Builder[A, ArrayVector[A]] =
new ArrayVectorBuilder[A](elemManifest)
override protected[this] def newBuilder: Builder[A, WrappedArray[A]] =
new WrappedArrayBuilder[A](elemManifest)
}

View File

@ -15,15 +15,15 @@ import scala.collection.generic._
import scala.reflect.ClassManifest
/** A builder class for arrays */
class ArrayVectorBuilder[A](manifest: ClassManifest[A]) extends Builder[A, ArrayVector[A]] {
class WrappedArrayBuilder[A](manifest: ClassManifest[A]) extends Builder[A, WrappedArray[A]] {
private var elems: ArrayVector[A] = _
private var elems: WrappedArray[A] = _
private var capacity: Int = 0
private var size: Int = 0
private def mkArray(size: Int): ArrayVector[A] = {
val newelems = manifest.newArrayVector(size)
if (this.size > 0) Array.copy(elems.value, 0, newelems.value, 0, this.size)
private def mkArray(size: Int): WrappedArray[A] = {
val newelems = manifest.newWrappedArray(size)
if (this.size > 0) Array.copy(elems.array, 0, newelems.array, 0, this.size)
newelems
}

View File

@ -6,23 +6,23 @@
** |/ **
\* */
// $Id: BooleanArrayVector.scala 18572 2009-08-25 14:14:11Z odersky $
// $Id: WrappedBooleanArray.scala 18572 2009-08-25 14:14:11Z odersky $
package scala.collection.mutable
import scala.reflect.ClassManifest
@serializable
final class BooleanArrayVector(val value: Array[Boolean]) extends ArrayVector[Boolean] {
final class WrappedBooleanArray(val array: Array[Boolean]) extends WrappedArray[Boolean] {
def elemManifest = ClassManifest.Boolean
def length: Int = value.length
def length: Int = array.length
def apply(index: Int): Boolean = value(index)
def apply(index: Int): Boolean = array(index)
def update(index: Int, elem: Boolean) {
value(index) = elem
array(index) = elem
}
def unbox(elemClass: Class[_]): AnyRef = value
def unbox(elemClass: Class[_]): AnyRef = array
}

View File

@ -6,23 +6,23 @@
** |/ **
\* */
// $Id: ByteArrayVector.scala 18572 2009-08-25 14:14:11Z odersky $
// $Id: WrappedByteArray.scala 18572 2009-08-25 14:14:11Z odersky $
package scala.collection.mutable
import scala.reflect.ClassManifest
@serializable
final class ByteArrayVector(val value: Array[Byte]) extends ArrayVector[Byte] {
final class WrappedByteArray(val array: Array[Byte]) extends WrappedArray[Byte] {
def elemManifest = ClassManifest.Byte
def length: Int = value.length
def length: Int = array.length
def apply(index: Int): Byte = value(index)
def apply(index: Int): Byte = array(index)
def update(index: Int, elem: Byte) {
value(index) = elem
array(index) = elem
}
def unbox(elemClass: Class[_]): AnyRef = value
def unbox(elemClass: Class[_]): AnyRef = array
}

View File

@ -6,23 +6,23 @@
** |/ **
\* */
// $Id: CharArrayVector.scala 18572 2009-08-25 14:14:11Z odersky $
// $Id: WrappedCharArray.scala 18572 2009-08-25 14:14:11Z odersky $
package scala.collection.mutable
import scala.reflect.ClassManifest
@serializable
final class CharArrayVector(val value: Array[Char]) extends ArrayVector[Char] {
final class WrappedCharArray(val array: Array[Char]) extends WrappedArray[Char] {
def elemManifest = ClassManifest.Char
def length: Int = value.length
def length: Int = array.length
def apply(index: Int): Char = value(index)
def apply(index: Int): Char = array(index)
def update(index: Int, elem: Char) {
value(index) = elem
array(index) = elem
}
def unbox(elemClass: Class[_]): AnyRef = value
def unbox(elemClass: Class[_]): AnyRef = array
}

View File

@ -6,23 +6,23 @@
** |/ **
\* */
// $Id: DoubleArrayVector.scala 18572 2009-08-25 14:14:11Z odersky $
// $Id: WrappedDoubleArray.scala 18572 2009-08-25 14:14:11Z odersky $
package scala.collection.mutable
import scala.reflect.ClassManifest
@serializable
final class DoubleArrayVector(val value: Array[Double]) extends ArrayVector[Double] {
final class WrappedDoubleArray(val array: Array[Double]) extends WrappedArray[Double] {
def elemManifest = ClassManifest.Double
def length: Int = value.length
def length: Int = array.length
def apply(index: Int): Double = value(index)
def apply(index: Int): Double = array(index)
def update(index: Int, elem: Double) {
value(index) = elem
array(index) = elem
}
def unbox(elemClass: Class[_]): AnyRef = value
def unbox(elemClass: Class[_]): AnyRef = array
}

View File

@ -6,23 +6,23 @@
** |/ **
\* */
// $Id: FloatArrayVector.scala 18572 2009-08-25 14:14:11Z odersky $
// $Id: WrappedFloatArray.scala 18572 2009-08-25 14:14:11Z odersky $
package scala.collection.mutable
import scala.reflect.ClassManifest
@serializable
final class FloatArrayVector(val value: Array[Float]) extends ArrayVector[Float] {
final class WrappedFloatArray(val array: Array[Float]) extends WrappedArray[Float] {
def elemManifest = ClassManifest.Float
def length: Int = value.length
def length: Int = array.length
def apply(index: Int): Float = value(index)
def apply(index: Int): Float = array(index)
def update(index: Int, elem: Float) {
value(index) = elem
array(index) = elem
}
def unbox(elemClass: Class[_]): AnyRef = value
def unbox(elemClass: Class[_]): AnyRef = array
}

View File

@ -6,23 +6,23 @@
** |/ **
\* */
// $Id: IntArrayVector.scala 18572 2009-08-25 14:14:11Z odersky $
// $Id: WrappedIntArray.scala 18572 2009-08-25 14:14:11Z odersky $
package scala.collection.mutable
import scala.reflect.ClassManifest
@serializable
final class IntArrayVector(val value: Array[Int]) extends ArrayVector[Int] {
final class WrappedIntArray(val array: Array[Int]) extends WrappedArray[Int] {
def elemManifest = ClassManifest.Int
def length: Int = value.length
def length: Int = array.length
def apply(index: Int): Int = value(index)
def apply(index: Int): Int = array(index)
def update(index: Int, elem: Int) {
value(index) = elem
array(index) = elem
}
def unbox(elemClass: Class[_]): AnyRef = value
def unbox(elemClass: Class[_]): AnyRef = array
}

View File

@ -6,23 +6,23 @@
** |/ **
\* */
// $Id: LongArrayVector.scala 18572 2009-08-25 14:14:11Z odersky $
// $Id: WrappedLongArray.scala 18572 2009-08-25 14:14:11Z odersky $
package scala.collection.mutable
import scala.reflect.ClassManifest
@serializable
final class LongArrayVector(val value: Array[Long]) extends ArrayVector[Long] {
final class WrappedLongArray(val array: Array[Long]) extends WrappedArray[Long] {
def elemManifest = ClassManifest.Long
def length: Int = value.length
def length: Int = array.length
def apply(index: Int): Long = value(index)
def apply(index: Int): Long = array(index)
def update(index: Int, elem: Long) {
value(index) = elem
array(index) = elem
}
def unbox(elemClass: Class[_]): AnyRef = value
def unbox(elemClass: Class[_]): AnyRef = array
}

View File

@ -6,7 +6,7 @@
** |/ **
\* */
// $Id: ObjectArrayVector.scala 18589 2009-08-27 14:45:35Z odersky $
// $Id: WrappedObjectArray.scala 18589 2009-08-27 14:45:35Z odersky $
package scala.collection.mutable
@ -15,19 +15,18 @@ import scala.reflect.ClassManifest
import Predef._
@serializable
final class ObjectArrayVector[A <: AnyRef](val value: Array[AnyRef], val elemManifest: ClassManifest[A]) extends ArrayVector[A] {
final class WrappedRefArray[A](val array: Array[AnyRef]) extends WrappedArray[A] {
// @deprecated("creating array w/o manifest")
def this(value: Array[AnyRef]) = this(value, null) // !!! todo: remove
lazy val elemManifest = ClassManifest.classType[A](array.getClass.getComponentType)
def length: Int = value.length
def length: Int = array.length
def apply(index: Int): A = value(index).asInstanceOf[A]
def apply(index: Int): A = array(index).asInstanceOf[A]
def update(index: Int, elem: A) {
value(index) = elem
array(index) = elem.asInstanceOf[AnyRef]
}
def unbox(elemClass: Class[_]): AnyRef = value
def unbox(elemClass: Class[_]): AnyRef = array
}

View File

@ -6,23 +6,23 @@
** |/ **
\* */
// $Id: ShortArrayVector.scala 18572 2009-08-25 14:14:11Z odersky $
// $Id: WrappedShortArray.scala 18572 2009-08-25 14:14:11Z odersky $
package scala.collection.mutable
import scala.reflect.ClassManifest
@serializable
final class ShortArrayVector(val value: Array[Short]) extends ArrayVector[Short] {
final class WrappedShortArray(val array: Array[Short]) extends WrappedArray[Short] {
def elemManifest = ClassManifest.Short
def length: Int = value.length
def length: Int = array.length
def apply(index: Int): Short = value(index)
def apply(index: Int): Short = array(index)
def update(index: Int, elem: Short) {
value(index) = elem
array(index) = elem
}
def unbox(elemClass: Class[_]): AnyRef = value
def unbox(elemClass: Class[_]): AnyRef = array
}

View File

@ -6,23 +6,23 @@
** |/ **
\* */
// $Id: DoubleArrayVector.scala 17680 2009-05-08 16:33:15Z odersky $
// $Id: WrappedDoubleArray.scala 17680 2009-05-08 16:33:15Z odersky $
package scala.collection.mutable
import scala.reflect.ClassManifest
@serializable
final class UnitArrayVector(val value: Array[Unit]) extends ArrayVector[Unit] {
final class WrappedUnitArray(val array: Array[Unit]) extends WrappedArray[Unit] {
def elemManifest = ClassManifest.Unit
def length: Int = value.length
def length: Int = array.length
def apply(index: Int): Unit = value(index)
def apply(index: Int): Unit = array(index)
def update(index: Int, elem: Unit) {
value(index) = elem
array(index) = elem
}
def unbox(elemClass: Class[_]): AnyRef = value
def unbox(elemClass: Class[_]): AnyRef = array
}

View File

@ -13,7 +13,7 @@ package scala.reflect
import scala.runtime._
import scala.collection.immutable.Nil
import scala.collection.mutable.{ArrayVector, ObjectArrayVector}
import scala.collection.mutable.{WrappedArray, WrappedRefArray}
/** <p>
* A <code>ClassManifest[T]</code> is an opaque descriptor for type <code>T</code>.
@ -78,10 +78,10 @@ trait ClassManifest[T] extends OptManifest[T] {
.asInstanceOf[BoxedArray[T]]
}
def newArrayVector(len: Int): ArrayVector[T] =
def newWrappedArray(len: Int): WrappedArray[T] =
// it's safe to assume T <: AnyRef here because the method is overridden for all value type manifests
new ObjectArrayVector(java.lang.reflect.Array.newInstance(erasure, len).asInstanceOf[Array[AnyRef]])
.asInstanceOf[ArrayVector[T]]
new WrappedRefArray(java.lang.reflect.Array.newInstance(erasure, len).asInstanceOf[Array[AnyRef]])
.asInstanceOf[WrappedArray[T]]
def typeArguments: List[OptManifest[_]] = List()

View File

@ -46,63 +46,63 @@ object Manifest {
def erasure = java.lang.Byte.TYPE
override def toString = "Byte"
override def newArray(len: Int): BoxedArray[Byte] = new BoxedByteArray(new Array[Byte](len))
override def newArrayVector(len: Int): ArrayVector[Byte] = new ByteArrayVector(new Array[Byte](len))
override def newWrappedArray(len: Int): WrappedArray[Byte] = new WrappedByteArray(new Array[Byte](len))
}
val Short = new (Manifest[Short] @serializable) {
def erasure = java.lang.Short.TYPE
override def toString = "Short"
override def newArray(len: Int): BoxedArray[Short] = new BoxedShortArray(new Array[Short](len))
override def newArrayVector(len: Int): ArrayVector[Short] = new ShortArrayVector(new Array[Short](len))
override def newWrappedArray(len: Int): WrappedArray[Short] = new WrappedShortArray(new Array[Short](len))
}
val Char = new (Manifest[Char] @serializable) {
def erasure = java.lang.Character.TYPE
override def toString = "Char"
override def newArray(len: Int): BoxedArray[Char] = new BoxedCharArray(new Array[Char](len))
override def newArrayVector(len: Int): ArrayVector[Char] = new CharArrayVector(new Array[Char](len))
override def newWrappedArray(len: Int): WrappedArray[Char] = new WrappedCharArray(new Array[Char](len))
}
val Int = new (Manifest[Int] @serializable) {
def erasure = java.lang.Integer.TYPE
override def toString = "Int"
override def newArray(len: Int): BoxedArray[Int] = new BoxedIntArray(new Array[Int](len))
override def newArrayVector(len: Int): ArrayVector[Int] = new IntArrayVector(new Array[Int](len))
override def newWrappedArray(len: Int): WrappedArray[Int] = new WrappedIntArray(new Array[Int](len))
}
val Long = new (Manifest[Long] @serializable) {
def erasure = java.lang.Long.TYPE
override def toString = "Long"
override def newArray(len: Int): BoxedArray[Long] = new BoxedLongArray(new Array[Long](len))
override def newArrayVector(len: Int): ArrayVector[Long] = new LongArrayVector(new Array[Long](len))
override def newWrappedArray(len: Int): WrappedArray[Long] = new WrappedLongArray(new Array[Long](len))
}
val Float = new (Manifest[Float] @serializable) {
def erasure = java.lang.Float.TYPE
override def toString = "Float"
override def newArray(len: Int): BoxedArray[Float] = new BoxedFloatArray(new Array[Float](len))
override def newArrayVector(len: Int): ArrayVector[Float] = new FloatArrayVector(new Array[Float](len))
override def newWrappedArray(len: Int): WrappedArray[Float] = new WrappedFloatArray(new Array[Float](len))
}
val Double = new (Manifest[Double] @serializable) {
def erasure = java.lang.Double.TYPE
override def toString = "Double"
override def newArray(len: Int): BoxedArray[Double] = new BoxedDoubleArray(new Array[Double](len))
override def newArrayVector(len: Int): ArrayVector[Double] = new DoubleArrayVector(new Array[Double](len))
override def newWrappedArray(len: Int): WrappedArray[Double] = new WrappedDoubleArray(new Array[Double](len))
}
val Boolean = new (Manifest[Boolean] @serializable) {
def erasure = java.lang.Boolean.TYPE
override def toString = "Boolean"
override def newArray(len: Int): BoxedArray[Boolean] = new BoxedBooleanArray(new Array[Boolean](len))
override def newArrayVector(len: Int): ArrayVector[Boolean] = new BooleanArrayVector(new Array[Boolean](len))
override def newWrappedArray(len: Int): WrappedArray[Boolean] = new WrappedBooleanArray(new Array[Boolean](len))
}
val Unit = new (Manifest[Unit] @serializable) {
def erasure = java.lang.Void.TYPE
override def toString = "Unit"
override def newArray(len: Int): BoxedArray[Unit] = new BoxedUnitArray(new Array[Unit](len))
override def newArrayVector(len: Int): ArrayVector[Unit] = new UnitArrayVector(new Array[Unit](len))
override def newWrappedArray(len: Int): WrappedArray[Unit] = new WrappedUnitArray(new Array[Unit](len))
}
val Any: Manifest[Any] = new ClassTypeManifest[Any](None, classOf[java.lang.Object], List()) {

View File

@ -40,15 +40,15 @@ object ScalaRunTime {
/** Convert arrays to sequences, leave sequences as they are */
def toSequence[T](xs: AnyRef): Sequence[T] = xs match {
case ts: Sequence[T] => ts.asInstanceOf[Sequence[T]]
case x: Array[AnyRef] => new ObjectArrayVector(x, ClassManifest.classType(x.getClass.getComponentType))
case x: Array[Int] => new IntArrayVector(x).asInstanceOf[Array[T]]
case x: Array[Double] => new DoubleArrayVector(x).asInstanceOf[Array[T]]
case x: Array[Long] => new LongArrayVector(x).asInstanceOf[Array[T]]
case x: Array[Float] => new FloatArrayVector(x).asInstanceOf[Array[T]]
case x: Array[Char] => new CharArrayVector(x).asInstanceOf[Array[T]]
case x: Array[Byte] => new ByteArrayVector(x).asInstanceOf[Array[T]]
case x: Array[Short] => new ShortArrayVector(x).asInstanceOf[Array[T]]
case x: Array[Boolean] => new BooleanArrayVector(x).asInstanceOf[Array[T]]
case x: Array[AnyRef] => new WrappedRefArray(x).asInstanceOf[Array[T]]
case x: Array[Int] => new WrappedIntArray(x).asInstanceOf[Array[T]]
case x: Array[Double] => new WrappedDoubleArray(x).asInstanceOf[Array[T]]
case x: Array[Long] => new WrappedLongArray(x).asInstanceOf[Array[T]]
case x: Array[Float] => new WrappedFloatArray(x).asInstanceOf[Array[T]]
case x: Array[Char] => new WrappedCharArray(x).asInstanceOf[Array[T]]
case x: Array[Byte] => new WrappedByteArray(x).asInstanceOf[Array[T]]
case x: Array[Short] => new WrappedShortArray(x).asInstanceOf[Array[T]]
case x: Array[Boolean] => new WrappedBooleanArray(x).asInstanceOf[Array[T]]
case null => null
}
@ -165,20 +165,6 @@ object ScalaRunTime {
case null => null
}
def box(value: AnyRef): AnyRef = value match {
case x: String => new RichString(x)
case x: Array[AnyRef] => new BoxedObjectArray(x, ClassManifest.classType(x.getClass.getComponentType))
case x: Array[Int] => new BoxedIntArray(x)
case x: Array[Double] => new BoxedDoubleArray(x)
case x: Array[Long] => new BoxedLongArray(x)
case x: Array[Float] => new BoxedFloatArray(x)
case x: Array[Char] => new BoxedCharArray(x)
case x: Array[Byte] => new BoxedByteArray(x)
case x: Array[Short] => new BoxedShortArray(x)
case x: Array[Boolean] => new BoxedBooleanArray(x)
case x => x
}
/** Given any Scala value, convert it to a String.
*
* The primary motivation for this method is to provide a means for

View File

@ -23,3 +23,26 @@ object Test extends Application {
Console.println(s)
Console.println(2: String)
}
object TestPriority {
class C(x: Int) { def foo: Int = x + 1 }
class D(x: Int) { def foo: Int = x + 2 }
class IMPL {
implicit def Int2C(x: Int): C = new C(x)
}
object impl extends IMPL {
implicit def Int2D(x: Int): D = new D(x)
}
import impl._
val x: C = 2
val y: D = 2
assert(x.foo == 3, x.foo)
assert(y.foo == 4, y.foo)
assert((2).foo == 4, (2).foo)
}