jidt/tester.py

123 lines
5.0 KiB
Python
Executable File

##
## Java Information Dynamics Toolkit (JIDT)
## Copyright (C) 2012, Joseph T. Lizier
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
##
# = Example 4 - Transfer entropy on continuous data using Kraskov estimators =
# Simple transfer entropy (TE) calculation on continuous-valued data using the Kraskov-estimator TE calculator.
from jpype import *
import random
import math
import os
import numpy as np
# Change location of jar to match yours (we assume script is called from demos/python):
jarLocation = os.path.join(os.getcwd(), "infodynamics.jar");
if (not(os.path.isfile(jarLocation))):
exit("infodynamics.jar not found (expected at " + os.path.abspath(jarLocation) + ") - are you running from demos/python?")
# Start the JVM (add the "-Xmx" option with say 1024M if you get crashes due to not enough memory space)
startJVM(getDefaultJVMPath(), "-ea", "-Djava.class.path=" + jarLocation)
# Generate some random normalised data.
numObservations = 1000
covariance=0.4
# Source array of random normals:
sourceArray = [random.normalvariate(0,1) for r in range(numObservations)]
# Destination array of random normals with partial correlation to previous value of sourceArray
destArray = [0] + [sum(pair) for pair in zip([covariance*y for y in sourceArray[0:numObservations-1]], \
[(1-covariance)*y for y in [random.normalvariate(0,1) for r in range(numObservations-1)]] ) ]
sourceArray = 1e5*np.random.random(int(1e5))
sourceArray.sort()
#destArray = 1e5*np.random.random(int(1e5))
#destArray.sort()
destArray = sourceArray + 1
destArray += np.random.normal(scale = 0.01, size = destArray.shape)
RATE_Y = 1.0
NUM_Y_eventS = 1e5
RATE_X_MAX = 10
event_train_y = []
event_train_x = []
event_train_x.append(0)
event_train_y = np.random.uniform(0, int(NUM_Y_eventS / RATE_Y), int(NUM_Y_eventS))
event_train_y.sort()
most_recent_y_index = 0
previous_x_candidate = 0
while most_recent_y_index < (len(event_train_y) - 1):
this_x_candidate = previous_x_candidate + random.expovariate(RATE_X_MAX)
while most_recent_y_index < (len(event_train_y) - 1) and this_x_candidate > event_train_y[most_recent_y_index + 1]:
most_recent_y_index += 1
delta_t = this_x_candidate - event_train_y[most_recent_y_index]
rate = 0
if delta_t > 1:
rate = 0.5
else:
rate = 0.5 + 5.0 * math.exp(-50 * (delta_t - 0.5)**2) - 5.0 * math.exp(-50 * (0.5)**2)
if random.random() < rate/float(RATE_X_MAX):
event_train_x.append(this_x_candidate)
previous_x_candidate = this_x_candidate
event_train_x.sort()
sourceArray = event_train_y
destArray = event_train_x
# Uncorrelated source array:
sourceArray2 = [random.normalvariate(0,1) for r in range(numObservations)]
# Create a TE calculator and run it:
#teCalcClass = JPackage("infodynamics.measures.continuous.kraskov").TransferEntropyCalculatorKraskov
teCalcClass = JPackage("infodynamics.measures.spiking.integration").TransferEntropyCalculatorSpikingIntegration
teCalc = teCalcClass()
teCalc.setProperty("NORMALISE", "true") # Normalise the individual variables
teCalc.initialise(1) # Use history length 1 (Schreiber k=1)
teCalc.setProperty("k_HISTORY", "3")
teCalc.setProperty("l_HISTORY", "1")
teCalc.setProperty("knns", "4") # Use Kraskov parameter K=4 for 4 nearest points
# # Perform calculation with correlated source:
teCalc.setObservations(JArray(JDouble, 1)(sourceArray), JArray(JDouble, 1)(destArray))
result = teCalc.computeAverageLocalOfObservations()
# # Note that the calculation is a random variable (because the generated
# # data is a set of random variables) - the result will be of the order
# # of what we expect, but not exactly equal to it; in fact, there will
# # be a large variance around it.
# # Expected correlation is expected covariance / product of expected standard deviations:
# # (where square of destArray standard dev is sum of squares of std devs of
# # underlying distributions)
# corr_expected = covariance / (1 * math.sqrt(covariance**2 + (1-covariance)**2));
print("TE result %.4f nats" % \
(result,))
# # Perform calculation with uncorrelated source:
# teCalc.initialise() # Initialise leaving the parameters the same
# teCalc.setObservations(JArray(JDouble, 1)(sourceArray2), JArray(JDouble, 1)(destArray))
# result2 = teCalc.computeAverageLocalOfObservations()
# print("TE result %.4f nats; expected to be close to 0 nats for these uncorrelated Gaussians" % result2)